NExT-GPT: Any-to-Any Multimodal LLM

Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, Tat-Seng Chua
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:53366-53397, 2024.

Abstract

While recently Multimodal Large Language Models (MM-LLMs) have made exciting strides, they mostly fall prey to the limitation of only input-side multimodal understanding, without the ability to produce content in multiple modalities. As we humans always perceive the world and communicate with people through various modalities, developing any-to-any MM-LLMs capable of accepting and delivering content in any modality becomes essential to human-level AI. To fill the gap, we present an end-to-end general-purpose any-to-any MM-LLM system, NExT-GPT. We connect an LLM with multimodal adaptors and different diffusion decoders, enabling NExT-GPT to perceive inputs and generate outputs in arbitrary combinations of text, image, video, and audio. By leveraging the existing well-trained high-performing encoders and decoders, NExT-GPT is tuned with only a small amount of parameter (1%) of certain projection layers, which not only benefits low-cost training but also facilitates convenient expansion to more potential modalities. Moreover, we introduce a modality-switching instruction tuning (MosIT) and manually curate a high-quality dataset for MosIT, based on which NExT-GPT is empowered with complex cross-modal semantic understanding and content generation. Overall, our research showcases the promising possibility of building a unified AI agent capable of modeling universal modalities, paving the way for more human-like AI research in the community.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-wu24e, title = {{NE}x{T}-{GPT}: Any-to-Any Multimodal {LLM}}, author = {Wu, Shengqiong and Fei, Hao and Qu, Leigang and Ji, Wei and Chua, Tat-Seng}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {53366--53397}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/wu24e/wu24e.pdf}, url = {https://proceedings.mlr.press/v235/wu24e.html}, abstract = {While recently Multimodal Large Language Models (MM-LLMs) have made exciting strides, they mostly fall prey to the limitation of only input-side multimodal understanding, without the ability to produce content in multiple modalities. As we humans always perceive the world and communicate with people through various modalities, developing any-to-any MM-LLMs capable of accepting and delivering content in any modality becomes essential to human-level AI. To fill the gap, we present an end-to-end general-purpose any-to-any MM-LLM system, NExT-GPT. We connect an LLM with multimodal adaptors and different diffusion decoders, enabling NExT-GPT to perceive inputs and generate outputs in arbitrary combinations of text, image, video, and audio. By leveraging the existing well-trained high-performing encoders and decoders, NExT-GPT is tuned with only a small amount of parameter (1%) of certain projection layers, which not only benefits low-cost training but also facilitates convenient expansion to more potential modalities. Moreover, we introduce a modality-switching instruction tuning (MosIT) and manually curate a high-quality dataset for MosIT, based on which NExT-GPT is empowered with complex cross-modal semantic understanding and content generation. Overall, our research showcases the promising possibility of building a unified AI agent capable of modeling universal modalities, paving the way for more human-like AI research in the community.} }
Endnote
%0 Conference Paper %T NExT-GPT: Any-to-Any Multimodal LLM %A Shengqiong Wu %A Hao Fei %A Leigang Qu %A Wei Ji %A Tat-Seng Chua %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-wu24e %I PMLR %P 53366--53397 %U https://proceedings.mlr.press/v235/wu24e.html %V 235 %X While recently Multimodal Large Language Models (MM-LLMs) have made exciting strides, they mostly fall prey to the limitation of only input-side multimodal understanding, without the ability to produce content in multiple modalities. As we humans always perceive the world and communicate with people through various modalities, developing any-to-any MM-LLMs capable of accepting and delivering content in any modality becomes essential to human-level AI. To fill the gap, we present an end-to-end general-purpose any-to-any MM-LLM system, NExT-GPT. We connect an LLM with multimodal adaptors and different diffusion decoders, enabling NExT-GPT to perceive inputs and generate outputs in arbitrary combinations of text, image, video, and audio. By leveraging the existing well-trained high-performing encoders and decoders, NExT-GPT is tuned with only a small amount of parameter (1%) of certain projection layers, which not only benefits low-cost training but also facilitates convenient expansion to more potential modalities. Moreover, we introduce a modality-switching instruction tuning (MosIT) and manually curate a high-quality dataset for MosIT, based on which NExT-GPT is empowered with complex cross-modal semantic understanding and content generation. Overall, our research showcases the promising possibility of building a unified AI agent capable of modeling universal modalities, paving the way for more human-like AI research in the community.
APA
Wu, S., Fei, H., Qu, L., Ji, W. & Chua, T.. (2024). NExT-GPT: Any-to-Any Multimodal LLM. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:53366-53397 Available from https://proceedings.mlr.press/v235/wu24e.html.

Related Material