Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training

Jinxia Yang, Bing Su, Xin Zhao, Ji-Rong Wen
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:56382-56396, 2024.

Abstract

Medical vision-language pre-training methods mainly leverage the correspondence between paired medical images and radiological reports. Although multi-view spatial images and temporal sequences of image-report pairs are available in off-the-shelf multi-modal medical datasets, most existing methods have not thoroughly tapped into such extensive supervision signals. In this paper, we introduce the Med-ST framework for fine-grained spatial and temporal modeling to exploit information from multiple spatial views of chest radiographs and temporal historical records. For spatial modeling, Med-ST employs the Mixture of View Expert (MoVE) architecture to integrate different visual features from both frontal and lateral views. To achieve a more comprehensive alignment, Med-ST not only establishes the global alignment between whole images and texts but also introduces modality-weighted local alignment between text tokens and spatial regions of images. For temporal modeling, we propose a novel cross-modal bidirectional cycle consistency objective by forward mapping classification (FMC) and reverse mapping regression (RMR). By perceiving temporal information from simple to complex, Med-ST can learn temporal semantics. Experimental results across four distinct tasks demonstrate the effectiveness of Med-ST, especially in temporal classification tasks. Our code and model are available at https://github.com/SVT-Yang/MedST.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-yang24v, title = {Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training}, author = {Yang, Jinxia and Su, Bing and Zhao, Xin and Wen, Ji-Rong}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {56382--56396}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/yang24v/yang24v.pdf}, url = {https://proceedings.mlr.press/v235/yang24v.html}, abstract = {Medical vision-language pre-training methods mainly leverage the correspondence between paired medical images and radiological reports. Although multi-view spatial images and temporal sequences of image-report pairs are available in off-the-shelf multi-modal medical datasets, most existing methods have not thoroughly tapped into such extensive supervision signals. In this paper, we introduce the Med-ST framework for fine-grained spatial and temporal modeling to exploit information from multiple spatial views of chest radiographs and temporal historical records. For spatial modeling, Med-ST employs the Mixture of View Expert (MoVE) architecture to integrate different visual features from both frontal and lateral views. To achieve a more comprehensive alignment, Med-ST not only establishes the global alignment between whole images and texts but also introduces modality-weighted local alignment between text tokens and spatial regions of images. For temporal modeling, we propose a novel cross-modal bidirectional cycle consistency objective by forward mapping classification (FMC) and reverse mapping regression (RMR). By perceiving temporal information from simple to complex, Med-ST can learn temporal semantics. Experimental results across four distinct tasks demonstrate the effectiveness of Med-ST, especially in temporal classification tasks. Our code and model are available at https://github.com/SVT-Yang/MedST.} }
Endnote
%0 Conference Paper %T Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training %A Jinxia Yang %A Bing Su %A Xin Zhao %A Ji-Rong Wen %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-yang24v %I PMLR %P 56382--56396 %U https://proceedings.mlr.press/v235/yang24v.html %V 235 %X Medical vision-language pre-training methods mainly leverage the correspondence between paired medical images and radiological reports. Although multi-view spatial images and temporal sequences of image-report pairs are available in off-the-shelf multi-modal medical datasets, most existing methods have not thoroughly tapped into such extensive supervision signals. In this paper, we introduce the Med-ST framework for fine-grained spatial and temporal modeling to exploit information from multiple spatial views of chest radiographs and temporal historical records. For spatial modeling, Med-ST employs the Mixture of View Expert (MoVE) architecture to integrate different visual features from both frontal and lateral views. To achieve a more comprehensive alignment, Med-ST not only establishes the global alignment between whole images and texts but also introduces modality-weighted local alignment between text tokens and spatial regions of images. For temporal modeling, we propose a novel cross-modal bidirectional cycle consistency objective by forward mapping classification (FMC) and reverse mapping regression (RMR). By perceiving temporal information from simple to complex, Med-ST can learn temporal semantics. Experimental results across four distinct tasks demonstrate the effectiveness of Med-ST, especially in temporal classification tasks. Our code and model are available at https://github.com/SVT-Yang/MedST.
APA
Yang, J., Su, B., Zhao, X. & Wen, J.. (2024). Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:56382-56396 Available from https://proceedings.mlr.press/v235/yang24v.html.

Related Material