Efficient Algorithms for Empirical Group Distributionally Robust Optimization and Beyond

Dingzhi Yu, Yunuo Cai, Wei Jiang, Lijun Zhang
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:57384-57414, 2024.

Abstract

In this paper, we investigate the empirical counterpart of Group Distributionally Robust Optimization (GDRO), which aims to minimize the maximal empirical risk across $m$ distinct groups. We formulate empirical GDRO as a two-level finite-sum convex-concave minimax optimization problem and develop an algorithm called ALEG to benefit from its special structure. ALEG is a double-looped stochastic primal-dual algorithm that incorporates variance reduction techniques into a modified mirror prox routine. To exploit the two-level finite-sum structure, we propose a simple group sampling strategy to construct the stochastic gradient with a smaller Lipschitz constant and then perform variance reduction for all groups. Theoretical analysis shows that ALEG achieves $\varepsilon$-accuracy within a computation complexity of $\mathcal{O}\left(\frac{m\sqrt{\bar{n}\ln{m}}}{\varepsilon}\right)$, where $\bar n$ is the average number of samples among $m$ groups. Notably, our approach outperforms the state-of-the-art method by a factor of $\sqrt{m}$. Based on ALEG, we further develop a two-stage optimization algorithm called ALEM to deal with the empirical Minimax Excess Risk Optimization (MERO) problem. The computation complexity of ALEM nearly matches that of ALEG, surpassing the rates of existing methods.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-yu24a, title = {Efficient Algorithms for Empirical Group Distributionally Robust Optimization and Beyond}, author = {Yu, Dingzhi and Cai, Yunuo and Jiang, Wei and Zhang, Lijun}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {57384--57414}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/yu24a/yu24a.pdf}, url = {https://proceedings.mlr.press/v235/yu24a.html}, abstract = {In this paper, we investigate the empirical counterpart of Group Distributionally Robust Optimization (GDRO), which aims to minimize the maximal empirical risk across $m$ distinct groups. We formulate empirical GDRO as a two-level finite-sum convex-concave minimax optimization problem and develop an algorithm called ALEG to benefit from its special structure. ALEG is a double-looped stochastic primal-dual algorithm that incorporates variance reduction techniques into a modified mirror prox routine. To exploit the two-level finite-sum structure, we propose a simple group sampling strategy to construct the stochastic gradient with a smaller Lipschitz constant and then perform variance reduction for all groups. Theoretical analysis shows that ALEG achieves $\varepsilon$-accuracy within a computation complexity of $\mathcal{O}\left(\frac{m\sqrt{\bar{n}\ln{m}}}{\varepsilon}\right)$, where $\bar n$ is the average number of samples among $m$ groups. Notably, our approach outperforms the state-of-the-art method by a factor of $\sqrt{m}$. Based on ALEG, we further develop a two-stage optimization algorithm called ALEM to deal with the empirical Minimax Excess Risk Optimization (MERO) problem. The computation complexity of ALEM nearly matches that of ALEG, surpassing the rates of existing methods.} }
Endnote
%0 Conference Paper %T Efficient Algorithms for Empirical Group Distributionally Robust Optimization and Beyond %A Dingzhi Yu %A Yunuo Cai %A Wei Jiang %A Lijun Zhang %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-yu24a %I PMLR %P 57384--57414 %U https://proceedings.mlr.press/v235/yu24a.html %V 235 %X In this paper, we investigate the empirical counterpart of Group Distributionally Robust Optimization (GDRO), which aims to minimize the maximal empirical risk across $m$ distinct groups. We formulate empirical GDRO as a two-level finite-sum convex-concave minimax optimization problem and develop an algorithm called ALEG to benefit from its special structure. ALEG is a double-looped stochastic primal-dual algorithm that incorporates variance reduction techniques into a modified mirror prox routine. To exploit the two-level finite-sum structure, we propose a simple group sampling strategy to construct the stochastic gradient with a smaller Lipschitz constant and then perform variance reduction for all groups. Theoretical analysis shows that ALEG achieves $\varepsilon$-accuracy within a computation complexity of $\mathcal{O}\left(\frac{m\sqrt{\bar{n}\ln{m}}}{\varepsilon}\right)$, where $\bar n$ is the average number of samples among $m$ groups. Notably, our approach outperforms the state-of-the-art method by a factor of $\sqrt{m}$. Based on ALEG, we further develop a two-stage optimization algorithm called ALEM to deal with the empirical Minimax Excess Risk Optimization (MERO) problem. The computation complexity of ALEM nearly matches that of ALEG, surpassing the rates of existing methods.
APA
Yu, D., Cai, Y., Jiang, W. & Zhang, L.. (2024). Efficient Algorithms for Empirical Group Distributionally Robust Optimization and Beyond. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:57384-57414 Available from https://proceedings.mlr.press/v235/yu24a.html.

Related Material