Causal Representation Learning from Multiple Distributions: A General Setting

Kun Zhang, Shaoan Xie, Ignavier Ng, Yujia Zheng
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:60057-60075, 2024.

Abstract

In many problems, the measured variables (e.g., image pixels) are just mathematical functions of the latent causal variables (e.g., the underlying concepts or objects). For the purpose of making predictions in changing environments or making proper changes to the system, it is helpful to recover the latent causal variables $Z_i$ and their causal relations represented by graph $\mathcal{G}_Z$. This problem has recently been known as causal representation learning. This paper is concerned with a general, completely nonparametric setting of causal representation learning from multiple distributions (arising from heterogeneous data or nonstationary time series), without assuming hard interventions behind distribution changes. We aim to develop general solutions in this fundamental case; as a by product, this helps see the unique benefit offered by other assumptions such as parametric causal models or hard interventions. We show that under the sparsity constraint on the recovered graph over the latent variables and suitable sufficient change conditions on the causal influences, interestingly, one can recover the moralized graph of the underlying directed acyclic graph, and the recovered latent variables and their relations are related to the underlying causal model in a specific, nontrivial way. In some cases, most latent variables can even be recovered up to component-wise transformations. Experimental results verify our theoretical claims.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-zhang24br, title = {Causal Representation Learning from Multiple Distributions: A General Setting}, author = {Zhang, Kun and Xie, Shaoan and Ng, Ignavier and Zheng, Yujia}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {60057--60075}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/zhang24br/zhang24br.pdf}, url = {https://proceedings.mlr.press/v235/zhang24br.html}, abstract = {In many problems, the measured variables (e.g., image pixels) are just mathematical functions of the latent causal variables (e.g., the underlying concepts or objects). For the purpose of making predictions in changing environments or making proper changes to the system, it is helpful to recover the latent causal variables $Z_i$ and their causal relations represented by graph $\mathcal{G}_Z$. This problem has recently been known as causal representation learning. This paper is concerned with a general, completely nonparametric setting of causal representation learning from multiple distributions (arising from heterogeneous data or nonstationary time series), without assuming hard interventions behind distribution changes. We aim to develop general solutions in this fundamental case; as a by product, this helps see the unique benefit offered by other assumptions such as parametric causal models or hard interventions. We show that under the sparsity constraint on the recovered graph over the latent variables and suitable sufficient change conditions on the causal influences, interestingly, one can recover the moralized graph of the underlying directed acyclic graph, and the recovered latent variables and their relations are related to the underlying causal model in a specific, nontrivial way. In some cases, most latent variables can even be recovered up to component-wise transformations. Experimental results verify our theoretical claims.} }
Endnote
%0 Conference Paper %T Causal Representation Learning from Multiple Distributions: A General Setting %A Kun Zhang %A Shaoan Xie %A Ignavier Ng %A Yujia Zheng %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-zhang24br %I PMLR %P 60057--60075 %U https://proceedings.mlr.press/v235/zhang24br.html %V 235 %X In many problems, the measured variables (e.g., image pixels) are just mathematical functions of the latent causal variables (e.g., the underlying concepts or objects). For the purpose of making predictions in changing environments or making proper changes to the system, it is helpful to recover the latent causal variables $Z_i$ and their causal relations represented by graph $\mathcal{G}_Z$. This problem has recently been known as causal representation learning. This paper is concerned with a general, completely nonparametric setting of causal representation learning from multiple distributions (arising from heterogeneous data or nonstationary time series), without assuming hard interventions behind distribution changes. We aim to develop general solutions in this fundamental case; as a by product, this helps see the unique benefit offered by other assumptions such as parametric causal models or hard interventions. We show that under the sparsity constraint on the recovered graph over the latent variables and suitable sufficient change conditions on the causal influences, interestingly, one can recover the moralized graph of the underlying directed acyclic graph, and the recovered latent variables and their relations are related to the underlying causal model in a specific, nontrivial way. In some cases, most latent variables can even be recovered up to component-wise transformations. Experimental results verify our theoretical claims.
APA
Zhang, K., Xie, S., Ng, I. & Zheng, Y.. (2024). Causal Representation Learning from Multiple Distributions: A General Setting. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:60057-60075 Available from https://proceedings.mlr.press/v235/zhang24br.html.

Related Material