Navigating Complexity: Toward Lossless Graph Condensation via Expanding Window Matching

Yuchen Zhang, Tianle Zhang, Kai Wang, Ziyao Guo, Yuxuan Liang, Xavier Bresson, Wei Jin, Yang You
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:60379-60395, 2024.

Abstract

Graph condensation aims to reduce the size of a large-scale graph dataset by synthesizing a compact counterpart without sacrificing the performance of Graph Neural Networks (GNNs) trained on it, which has shed light on reducing the computational cost for training GNNs. Nevertheless, existing methods often fall short of accurately replicating the original graph for certain datasets, thereby failing to achieve the objective of lossless condensation. To understand this phenomenon, we investigate the potential reasons and reveal that the previous state-of-the-art trajectory matching method provides biased and restricted supervision signals from the original graph when optimizing the condensed one. This significantly limits both the scale and efficacy of the condensed graph. In this paper, we make the first attempt toward lossless graph condensation by bridging the previously neglected supervision signals. Specifically, we employ a curriculum learning strategy to train expert trajectories with more diverse supervision signals from the original graph, and then effectively transfer the information into the condensed graph with expanding window matching. Moreover, we design a loss function to further extract knowledge from the expert trajectories. Theoretical analysis justifies the design of our method and extensive experiments verify its superiority across different datasets. Code is released at https://github.com/NUS-HPC-AI-Lab/GEOM.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-zhang24cg, title = {Navigating Complexity: Toward Lossless Graph Condensation via Expanding Window Matching}, author = {Zhang, Yuchen and Zhang, Tianle and Wang, Kai and Guo, Ziyao and Liang, Yuxuan and Bresson, Xavier and Jin, Wei and You, Yang}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {60379--60395}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/zhang24cg/zhang24cg.pdf}, url = {https://proceedings.mlr.press/v235/zhang24cg.html}, abstract = {Graph condensation aims to reduce the size of a large-scale graph dataset by synthesizing a compact counterpart without sacrificing the performance of Graph Neural Networks (GNNs) trained on it, which has shed light on reducing the computational cost for training GNNs. Nevertheless, existing methods often fall short of accurately replicating the original graph for certain datasets, thereby failing to achieve the objective of lossless condensation. To understand this phenomenon, we investigate the potential reasons and reveal that the previous state-of-the-art trajectory matching method provides biased and restricted supervision signals from the original graph when optimizing the condensed one. This significantly limits both the scale and efficacy of the condensed graph. In this paper, we make the first attempt toward lossless graph condensation by bridging the previously neglected supervision signals. Specifically, we employ a curriculum learning strategy to train expert trajectories with more diverse supervision signals from the original graph, and then effectively transfer the information into the condensed graph with expanding window matching. Moreover, we design a loss function to further extract knowledge from the expert trajectories. Theoretical analysis justifies the design of our method and extensive experiments verify its superiority across different datasets. Code is released at https://github.com/NUS-HPC-AI-Lab/GEOM.} }
Endnote
%0 Conference Paper %T Navigating Complexity: Toward Lossless Graph Condensation via Expanding Window Matching %A Yuchen Zhang %A Tianle Zhang %A Kai Wang %A Ziyao Guo %A Yuxuan Liang %A Xavier Bresson %A Wei Jin %A Yang You %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-zhang24cg %I PMLR %P 60379--60395 %U https://proceedings.mlr.press/v235/zhang24cg.html %V 235 %X Graph condensation aims to reduce the size of a large-scale graph dataset by synthesizing a compact counterpart without sacrificing the performance of Graph Neural Networks (GNNs) trained on it, which has shed light on reducing the computational cost for training GNNs. Nevertheless, existing methods often fall short of accurately replicating the original graph for certain datasets, thereby failing to achieve the objective of lossless condensation. To understand this phenomenon, we investigate the potential reasons and reveal that the previous state-of-the-art trajectory matching method provides biased and restricted supervision signals from the original graph when optimizing the condensed one. This significantly limits both the scale and efficacy of the condensed graph. In this paper, we make the first attempt toward lossless graph condensation by bridging the previously neglected supervision signals. Specifically, we employ a curriculum learning strategy to train expert trajectories with more diverse supervision signals from the original graph, and then effectively transfer the information into the condensed graph with expanding window matching. Moreover, we design a loss function to further extract knowledge from the expert trajectories. Theoretical analysis justifies the design of our method and extensive experiments verify its superiority across different datasets. Code is released at https://github.com/NUS-HPC-AI-Lab/GEOM.
APA
Zhang, Y., Zhang, T., Wang, K., Guo, Z., Liang, Y., Bresson, X., Jin, W. & You, Y.. (2024). Navigating Complexity: Toward Lossless Graph Condensation via Expanding Window Matching. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:60379-60395 Available from https://proceedings.mlr.press/v235/zhang24cg.html.

Related Material