On Prompt-Driven Safeguarding for Large Language Models

Chujie Zheng, Fan Yin, Hao Zhou, Fandong Meng, Jie Zhou, Kai-Wei Chang, Minlie Huang, Nanyun Peng
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:61593-61613, 2024.

Abstract

Prepending model inputs with safety prompts is a common practice for safeguarding large language models (LLMs) against queries with harmful intents. However, the underlying working mechanisms of safety prompts have not been unraveled yet, restricting the possibility of automatically optimizing them to improve LLM safety. In this work, we investigate how LLMs’ behavior (i.e., complying with or refusing user queries) is affected by safety prompts from the perspective of model representation. We find that in the representation space, the input queries are typically moved by safety prompts in a "higher-refusal" direction, in which models become more prone to refusing to provide assistance, even when the queries are harmless. On the other hand, LLMs are naturally capable of distinguishing harmful and harmless queries without safety prompts. Inspired by these findings, we propose a method for safety prompt optimization, namely DRO (Directed Representation Optimization). Treating a safety prompt as continuous, trainable embeddings, DRO learns to move the queries’ representations along or opposite the refusal direction, depending on their harmfulness. Experiments with eight LLMs on out-of-domain and jailbreak benchmarks demonstrate that DRO remarkably improves the safeguarding performance of human-crafted safety prompts, without compromising the models’ general performance.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-zheng24n, title = {On Prompt-Driven Safeguarding for Large Language Models}, author = {Zheng, Chujie and Yin, Fan and Zhou, Hao and Meng, Fandong and Zhou, Jie and Chang, Kai-Wei and Huang, Minlie and Peng, Nanyun}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {61593--61613}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/zheng24n/zheng24n.pdf}, url = {https://proceedings.mlr.press/v235/zheng24n.html}, abstract = {Prepending model inputs with safety prompts is a common practice for safeguarding large language models (LLMs) against queries with harmful intents. However, the underlying working mechanisms of safety prompts have not been unraveled yet, restricting the possibility of automatically optimizing them to improve LLM safety. In this work, we investigate how LLMs’ behavior (i.e., complying with or refusing user queries) is affected by safety prompts from the perspective of model representation. We find that in the representation space, the input queries are typically moved by safety prompts in a "higher-refusal" direction, in which models become more prone to refusing to provide assistance, even when the queries are harmless. On the other hand, LLMs are naturally capable of distinguishing harmful and harmless queries without safety prompts. Inspired by these findings, we propose a method for safety prompt optimization, namely DRO (Directed Representation Optimization). Treating a safety prompt as continuous, trainable embeddings, DRO learns to move the queries’ representations along or opposite the refusal direction, depending on their harmfulness. Experiments with eight LLMs on out-of-domain and jailbreak benchmarks demonstrate that DRO remarkably improves the safeguarding performance of human-crafted safety prompts, without compromising the models’ general performance.} }
Endnote
%0 Conference Paper %T On Prompt-Driven Safeguarding for Large Language Models %A Chujie Zheng %A Fan Yin %A Hao Zhou %A Fandong Meng %A Jie Zhou %A Kai-Wei Chang %A Minlie Huang %A Nanyun Peng %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-zheng24n %I PMLR %P 61593--61613 %U https://proceedings.mlr.press/v235/zheng24n.html %V 235 %X Prepending model inputs with safety prompts is a common practice for safeguarding large language models (LLMs) against queries with harmful intents. However, the underlying working mechanisms of safety prompts have not been unraveled yet, restricting the possibility of automatically optimizing them to improve LLM safety. In this work, we investigate how LLMs’ behavior (i.e., complying with or refusing user queries) is affected by safety prompts from the perspective of model representation. We find that in the representation space, the input queries are typically moved by safety prompts in a "higher-refusal" direction, in which models become more prone to refusing to provide assistance, even when the queries are harmless. On the other hand, LLMs are naturally capable of distinguishing harmful and harmless queries without safety prompts. Inspired by these findings, we propose a method for safety prompt optimization, namely DRO (Directed Representation Optimization). Treating a safety prompt as continuous, trainable embeddings, DRO learns to move the queries’ representations along or opposite the refusal direction, depending on their harmfulness. Experiments with eight LLMs on out-of-domain and jailbreak benchmarks demonstrate that DRO remarkably improves the safeguarding performance of human-crafted safety prompts, without compromising the models’ general performance.
APA
Zheng, C., Yin, F., Zhou, H., Meng, F., Zhou, J., Chang, K., Huang, M. & Peng, N.. (2024). On Prompt-Driven Safeguarding for Large Language Models. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:61593-61613 Available from https://proceedings.mlr.press/v235/zheng24n.html.

Related Material