Switched Flow Matching: Eliminating Singularities via Switching ODEs

Qunxi Zhu, Wei Lin
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:62443-62475, 2024.

Abstract

Continuous-time generative models, such as Flow Matching (FM), construct probability paths to transport between one distribution and another through the simulation-free learning of the neural ordinary differential equations (ODEs). During inference, however, the learned model often requires multiple neural network evaluations to accurately integrate the flow, resulting in a slow sampling speed. We attribute the reason to the inherent (joint) heterogeneity of source and/or target distributions, namely the singularity problem, which poses challenges for training the neural ODEs effectively. To address this issue, we propose a more general framework, termed Switched FM (SFM), that eliminates singularities via switching ODEs, as opposed to using a uniform ODE in FM. Importantly, we theoretically show that FM cannot transport between two simple distributions due to the existence and uniqueness of initial value problems of ODEs, while these limitations can be well tackled by SFM. From an orthogonal perspective, our framework can seamlessly integrate with the existing advanced techniques, such as minibatch optimal transport, to further enhance the straightness of the flow, yielding a more efficient sampling process with reduced costs. We demonstrate the effectiveness of the newly proposed SFM through several numerical examples.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-zhu24g, title = {Switched Flow Matching: Eliminating Singularities via Switching {ODE}s}, author = {Zhu, Qunxi and Lin, Wei}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {62443--62475}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/zhu24g/zhu24g.pdf}, url = {https://proceedings.mlr.press/v235/zhu24g.html}, abstract = {Continuous-time generative models, such as Flow Matching (FM), construct probability paths to transport between one distribution and another through the simulation-free learning of the neural ordinary differential equations (ODEs). During inference, however, the learned model often requires multiple neural network evaluations to accurately integrate the flow, resulting in a slow sampling speed. We attribute the reason to the inherent (joint) heterogeneity of source and/or target distributions, namely the singularity problem, which poses challenges for training the neural ODEs effectively. To address this issue, we propose a more general framework, termed Switched FM (SFM), that eliminates singularities via switching ODEs, as opposed to using a uniform ODE in FM. Importantly, we theoretically show that FM cannot transport between two simple distributions due to the existence and uniqueness of initial value problems of ODEs, while these limitations can be well tackled by SFM. From an orthogonal perspective, our framework can seamlessly integrate with the existing advanced techniques, such as minibatch optimal transport, to further enhance the straightness of the flow, yielding a more efficient sampling process with reduced costs. We demonstrate the effectiveness of the newly proposed SFM through several numerical examples.} }
Endnote
%0 Conference Paper %T Switched Flow Matching: Eliminating Singularities via Switching ODEs %A Qunxi Zhu %A Wei Lin %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-zhu24g %I PMLR %P 62443--62475 %U https://proceedings.mlr.press/v235/zhu24g.html %V 235 %X Continuous-time generative models, such as Flow Matching (FM), construct probability paths to transport between one distribution and another through the simulation-free learning of the neural ordinary differential equations (ODEs). During inference, however, the learned model often requires multiple neural network evaluations to accurately integrate the flow, resulting in a slow sampling speed. We attribute the reason to the inherent (joint) heterogeneity of source and/or target distributions, namely the singularity problem, which poses challenges for training the neural ODEs effectively. To address this issue, we propose a more general framework, termed Switched FM (SFM), that eliminates singularities via switching ODEs, as opposed to using a uniform ODE in FM. Importantly, we theoretically show that FM cannot transport between two simple distributions due to the existence and uniqueness of initial value problems of ODEs, while these limitations can be well tackled by SFM. From an orthogonal perspective, our framework can seamlessly integrate with the existing advanced techniques, such as minibatch optimal transport, to further enhance the straightness of the flow, yielding a more efficient sampling process with reduced costs. We demonstrate the effectiveness of the newly proposed SFM through several numerical examples.
APA
Zhu, Q. & Lin, W.. (2024). Switched Flow Matching: Eliminating Singularities via Switching ODEs. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:62443-62475 Available from https://proceedings.mlr.press/v235/zhu24g.html.

Related Material