Compositional Few-Shot Class-Incremental Learning

Yixiong Zou, Shanghang Zhang, Haichen Zhou, Yuhua Li, Ruixuan Li
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:62964-62977, 2024.

Abstract

Few-shot class-incremental learning (FSCIL) is proposed to continually learn from novel classes with only a few samples after the (pre-)training on base classes with sufficient data. However, this remains a challenge. In contrast, humans can easily recognize novel classes with a few samples. Cognitive science demonstrates that an important component of such human capability is compositional learning. This involves identifying visual primitives from learned knowledge and then composing new concepts using these transferred primitives, making incremental learning both effective and interpretable. To imitate human compositional learning, we propose a cognitive-inspired method for the FSCIL task. We define and build a compositional model based on set similarities, and then equip it with a primitive composition module and a primitive reuse module. In the primitive composition module, we propose to utilize the Centered Kernel Alignment (CKA) similarity to approximate the similarity between primitive sets, allowing the training and evaluation based on primitive compositions. In the primitive reuse module, we enhance primitive reusability by classifying inputs based on primitives replaced with the closest primitives from other classes. Experiments on three datasets validate our method, showing it outperforms current state-of-the-art methods with improved interpretability. Our code is available at https://github.com/Zoilsen/Comp-FSCIL.

Cite this Paper


BibTeX
@InProceedings{pmlr-v235-zou24c, title = {Compositional Few-Shot Class-Incremental Learning}, author = {Zou, Yixiong and Zhang, Shanghang and Zhou, Haichen and Li, Yuhua and Li, Ruixuan}, booktitle = {Proceedings of the 41st International Conference on Machine Learning}, pages = {62964--62977}, year = {2024}, editor = {Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix}, volume = {235}, series = {Proceedings of Machine Learning Research}, month = {21--27 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v235/main/assets/zou24c/zou24c.pdf}, url = {https://proceedings.mlr.press/v235/zou24c.html}, abstract = {Few-shot class-incremental learning (FSCIL) is proposed to continually learn from novel classes with only a few samples after the (pre-)training on base classes with sufficient data. However, this remains a challenge. In contrast, humans can easily recognize novel classes with a few samples. Cognitive science demonstrates that an important component of such human capability is compositional learning. This involves identifying visual primitives from learned knowledge and then composing new concepts using these transferred primitives, making incremental learning both effective and interpretable. To imitate human compositional learning, we propose a cognitive-inspired method for the FSCIL task. We define and build a compositional model based on set similarities, and then equip it with a primitive composition module and a primitive reuse module. In the primitive composition module, we propose to utilize the Centered Kernel Alignment (CKA) similarity to approximate the similarity between primitive sets, allowing the training and evaluation based on primitive compositions. In the primitive reuse module, we enhance primitive reusability by classifying inputs based on primitives replaced with the closest primitives from other classes. Experiments on three datasets validate our method, showing it outperforms current state-of-the-art methods with improved interpretability. Our code is available at https://github.com/Zoilsen/Comp-FSCIL.} }
Endnote
%0 Conference Paper %T Compositional Few-Shot Class-Incremental Learning %A Yixiong Zou %A Shanghang Zhang %A Haichen Zhou %A Yuhua Li %A Ruixuan Li %B Proceedings of the 41st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2024 %E Ruslan Salakhutdinov %E Zico Kolter %E Katherine Heller %E Adrian Weller %E Nuria Oliver %E Jonathan Scarlett %E Felix Berkenkamp %F pmlr-v235-zou24c %I PMLR %P 62964--62977 %U https://proceedings.mlr.press/v235/zou24c.html %V 235 %X Few-shot class-incremental learning (FSCIL) is proposed to continually learn from novel classes with only a few samples after the (pre-)training on base classes with sufficient data. However, this remains a challenge. In contrast, humans can easily recognize novel classes with a few samples. Cognitive science demonstrates that an important component of such human capability is compositional learning. This involves identifying visual primitives from learned knowledge and then composing new concepts using these transferred primitives, making incremental learning both effective and interpretable. To imitate human compositional learning, we propose a cognitive-inspired method for the FSCIL task. We define and build a compositional model based on set similarities, and then equip it with a primitive composition module and a primitive reuse module. In the primitive composition module, we propose to utilize the Centered Kernel Alignment (CKA) similarity to approximate the similarity between primitive sets, allowing the training and evaluation based on primitive compositions. In the primitive reuse module, we enhance primitive reusability by classifying inputs based on primitives replaced with the closest primitives from other classes. Experiments on three datasets validate our method, showing it outperforms current state-of-the-art methods with improved interpretability. Our code is available at https://github.com/Zoilsen/Comp-FSCIL.
APA
Zou, Y., Zhang, S., Zhou, H., Li, Y. & Li, R.. (2024). Compositional Few-Shot Class-Incremental Learning. Proceedings of the 41st International Conference on Machine Learning, in Proceedings of Machine Learning Research 235:62964-62977 Available from https://proceedings.mlr.press/v235/zou24c.html.

Related Material