Approximate Bayesian Class-Conditional Models under Continuous Representation Shift

Thomas L. Lee, Amos Storkey
Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, PMLR 238:3628-3636, 2024.

Abstract

For models consisting of a classifier in some representation space, learning online from a non-stationary data stream often necessitates changes in the representation. So, the question arises of what is the best way to adapt the classifier to shifts in representation. Current methods only slowly change the classifier to representation shift, introducing noise into learning as the classifier is misaligned to the representation. We propose DeepCCG, an empirical Bayesian approach to solve this problem. DeepCCG works by updating the posterior of a class conditional Gaussian classifier such that the classifier adapts in one step to representation shift. The use of a class conditional Gaussian classifier also enables DeepCCG to use a log conditional marginal likelihood loss to update the representation. To perform the update to the classifier and representation, DeepCCG maintains a fixed number of examples in memory and so a key part of DeepCCG is selecting what examples to store, choosing the subset that minimises the KL divergence between the true posterior and the posterior induced by the subset. We explore the behaviour of DeepCCG in online continual learning (CL), demonstrating that it performs well against a spectrum of online CL methods and that it reduces the change in performance due to representation shift.

Cite this Paper


BibTeX
@InProceedings{pmlr-v238-lee24c, title = {Approximate {B}ayesian Class-Conditional Models under Continuous Representation Shift}, author = {Lee, Thomas L. and Storkey, Amos}, booktitle = {Proceedings of The 27th International Conference on Artificial Intelligence and Statistics}, pages = {3628--3636}, year = {2024}, editor = {Dasgupta, Sanjoy and Mandt, Stephan and Li, Yingzhen}, volume = {238}, series = {Proceedings of Machine Learning Research}, month = {02--04 May}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v238/lee24c/lee24c.pdf}, url = {https://proceedings.mlr.press/v238/lee24c.html}, abstract = {For models consisting of a classifier in some representation space, learning online from a non-stationary data stream often necessitates changes in the representation. So, the question arises of what is the best way to adapt the classifier to shifts in representation. Current methods only slowly change the classifier to representation shift, introducing noise into learning as the classifier is misaligned to the representation. We propose DeepCCG, an empirical Bayesian approach to solve this problem. DeepCCG works by updating the posterior of a class conditional Gaussian classifier such that the classifier adapts in one step to representation shift. The use of a class conditional Gaussian classifier also enables DeepCCG to use a log conditional marginal likelihood loss to update the representation. To perform the update to the classifier and representation, DeepCCG maintains a fixed number of examples in memory and so a key part of DeepCCG is selecting what examples to store, choosing the subset that minimises the KL divergence between the true posterior and the posterior induced by the subset. We explore the behaviour of DeepCCG in online continual learning (CL), demonstrating that it performs well against a spectrum of online CL methods and that it reduces the change in performance due to representation shift.} }
Endnote
%0 Conference Paper %T Approximate Bayesian Class-Conditional Models under Continuous Representation Shift %A Thomas L. Lee %A Amos Storkey %B Proceedings of The 27th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2024 %E Sanjoy Dasgupta %E Stephan Mandt %E Yingzhen Li %F pmlr-v238-lee24c %I PMLR %P 3628--3636 %U https://proceedings.mlr.press/v238/lee24c.html %V 238 %X For models consisting of a classifier in some representation space, learning online from a non-stationary data stream often necessitates changes in the representation. So, the question arises of what is the best way to adapt the classifier to shifts in representation. Current methods only slowly change the classifier to representation shift, introducing noise into learning as the classifier is misaligned to the representation. We propose DeepCCG, an empirical Bayesian approach to solve this problem. DeepCCG works by updating the posterior of a class conditional Gaussian classifier such that the classifier adapts in one step to representation shift. The use of a class conditional Gaussian classifier also enables DeepCCG to use a log conditional marginal likelihood loss to update the representation. To perform the update to the classifier and representation, DeepCCG maintains a fixed number of examples in memory and so a key part of DeepCCG is selecting what examples to store, choosing the subset that minimises the KL divergence between the true posterior and the posterior induced by the subset. We explore the behaviour of DeepCCG in online continual learning (CL), demonstrating that it performs well against a spectrum of online CL methods and that it reduces the change in performance due to representation shift.
APA
Lee, T.L. & Storkey, A.. (2024). Approximate Bayesian Class-Conditional Models under Continuous Representation Shift. Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 238:3628-3636 Available from https://proceedings.mlr.press/v238/lee24c.html.

Related Material