[edit]
Characterizing uncertainty in predictions of genomic sequence-to-activity models
Proceedings of the 18th Machine Learning in Computational Biology meeting, PMLR 240:279-297, 2024.
Abstract
Genomic sequence-to-activity models are increasingly utilized to understand gene regulatory syntax and probe the functional consequences of regulatory variation. Current models make accurate predictions of relative activity levels across the human reference genome, but their performance is more limited for predicting the effects of genetic variants, such as explaining gene expression variation across individuals. To better understand the causes of these shortcomings, we examine the uncertainty in predictions of genomic sequence-to-activity models using an ensemble of Basenji2 model replicates. We characterize prediction consistency on four types of sequences: reference genome sequences, reference genome sequences perturbed with TF motifs, eQTLs, and personal genome sequences. We observe that models tend to make high-confidence predictions on reference sequences, even when incorrect, and low-confidence predictions on sequences with variants. For eQTLs and personal genome sequences, we find that model replicates make inconsistent predictions in >50% of cases. Our findings suggest strategies to improve performance of these models.