Learning to stabilize high-dimensional unknown systems using Lyapunov-guided exploration

Songyuan Zhang, Chuchu Fan
Proceedings of the 6th Annual Learning for Dynamics & Control Conference, PMLR 242:52-67, 2024.

Abstract

Designing stabilizing controllers is a fundamental challenge in autonomous systems, particularly for high-dimensional, nonlinear systems that can hardly be accurately modeled with differential equations. The Lyapunov theory offers a solution for stabilizing control systems, still, current methods relying on Lyapunov functions require access to complete dynamics or samples of system executions throughout the entire state space. Consequently, they are impractical for high-dimensional systems. This paper introduces a novel framework, LYapunov-Guided Exploration (LYGE), for learning stabilizing controllers tailored to high-dimensional, unknown systems. LYGE employs Lyapunov theory to iteratively guide the search for samples during exploration while simultaneously learning the local system dynamics, control policy, and Lyapunov functions. We demonstrate its scalability on highly complex systems, including a high-fidelity F-16 jet model featuring a 16D state space and a 4D input space. Experiments indicate that, compared to prior works in reinforcement learning, imitation learning, and neural certificates, LYGE reduces the distance to the goal by 50% while requiring only 5% to 32% of the samples. Furthermore, we demonstrate that our algorithm can be extended to learn controllers guided by other certificate functions for unknown systems.

Cite this Paper


BibTeX
@InProceedings{pmlr-v242-zhang24a, title = {Learning to stabilize high-dimensional unknown systems using {L}yapunov-guided exploration}, author = {Zhang, Songyuan and Fan, Chuchu}, booktitle = {Proceedings of the 6th Annual Learning for Dynamics & Control Conference}, pages = {52--67}, year = {2024}, editor = {Abate, Alessandro and Cannon, Mark and Margellos, Kostas and Papachristodoulou, Antonis}, volume = {242}, series = {Proceedings of Machine Learning Research}, month = {15--17 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v242/zhang24a/zhang24a.pdf}, url = {https://proceedings.mlr.press/v242/zhang24a.html}, abstract = {Designing stabilizing controllers is a fundamental challenge in autonomous systems, particularly for high-dimensional, nonlinear systems that can hardly be accurately modeled with differential equations. The Lyapunov theory offers a solution for stabilizing control systems, still, current methods relying on Lyapunov functions require access to complete dynamics or samples of system executions throughout the entire state space. Consequently, they are impractical for high-dimensional systems. This paper introduces a novel framework, LYapunov-Guided Exploration (LYGE), for learning stabilizing controllers tailored to high-dimensional, unknown systems. LYGE employs Lyapunov theory to iteratively guide the search for samples during exploration while simultaneously learning the local system dynamics, control policy, and Lyapunov functions. We demonstrate its scalability on highly complex systems, including a high-fidelity F-16 jet model featuring a 16D state space and a 4D input space. Experiments indicate that, compared to prior works in reinforcement learning, imitation learning, and neural certificates, LYGE reduces the distance to the goal by 50% while requiring only 5% to 32% of the samples. Furthermore, we demonstrate that our algorithm can be extended to learn controllers guided by other certificate functions for unknown systems.} }
Endnote
%0 Conference Paper %T Learning to stabilize high-dimensional unknown systems using Lyapunov-guided exploration %A Songyuan Zhang %A Chuchu Fan %B Proceedings of the 6th Annual Learning for Dynamics & Control Conference %C Proceedings of Machine Learning Research %D 2024 %E Alessandro Abate %E Mark Cannon %E Kostas Margellos %E Antonis Papachristodoulou %F pmlr-v242-zhang24a %I PMLR %P 52--67 %U https://proceedings.mlr.press/v242/zhang24a.html %V 242 %X Designing stabilizing controllers is a fundamental challenge in autonomous systems, particularly for high-dimensional, nonlinear systems that can hardly be accurately modeled with differential equations. The Lyapunov theory offers a solution for stabilizing control systems, still, current methods relying on Lyapunov functions require access to complete dynamics or samples of system executions throughout the entire state space. Consequently, they are impractical for high-dimensional systems. This paper introduces a novel framework, LYapunov-Guided Exploration (LYGE), for learning stabilizing controllers tailored to high-dimensional, unknown systems. LYGE employs Lyapunov theory to iteratively guide the search for samples during exploration while simultaneously learning the local system dynamics, control policy, and Lyapunov functions. We demonstrate its scalability on highly complex systems, including a high-fidelity F-16 jet model featuring a 16D state space and a 4D input space. Experiments indicate that, compared to prior works in reinforcement learning, imitation learning, and neural certificates, LYGE reduces the distance to the goal by 50% while requiring only 5% to 32% of the samples. Furthermore, we demonstrate that our algorithm can be extended to learn controllers guided by other certificate functions for unknown systems.
APA
Zhang, S. & Fan, C.. (2024). Learning to stabilize high-dimensional unknown systems using Lyapunov-guided exploration. Proceedings of the 6th Annual Learning for Dynamics & Control Conference, in Proceedings of Machine Learning Research 242:52-67 Available from https://proceedings.mlr.press/v242/zhang24a.html.

Related Material