MeSa: Masked, Geometric, and Supervised Pre-training for Monocular Depth Estimation

Muhammad Osama Khan, Junbang Liang, Chun-Kai Wang, Shan Yang, Yu Lou
Proceedings of UniReps: the First Workshop on Unifying Representations in Neural Models, PMLR 243:116-132, 2024.

Abstract

Pre-training has been an important ingredient in developing strong monocular depth estimation models in recent years. For instance, self-supervised learning (SSL) is particularly effective by alleviating the need for large datasets with dense ground-truth depth maps. However, despite these improvements, our study reveals that the later layers of the SOTA SSL method are actually suboptimal. By examining the layer-wise representations, we demonstrate significant changes in these later layers during fine-tuning, indicating the ineffectiveness of their pre-trained features for depth estimation. To address these limitations, we propose MeSa, a unified framework that leverages the complementary strengths of masked, geometric, and supervised pre-training. Hence, MeSa benefits from not only general-purpose representations learnt via masked pre-training but also specialized depth-specific features acquired via geometric and supervised pre-training. Our CKA layer-wise analysis confirms that our pre-training strategy indeed produces improved representations for the later layers, overcoming the drawbacks of the SOTA SSL method. Furthermore, via experiments on the NYUv2 and IBims-1 datasets, we demonstrate that these enhanced representations translate to performance improvements in both the in-distribution and out-of-distribution settings. We also investigate the influence of the pre-training dataset and demonstrate the efficacy of pre-training on LSUN, which yields significantly better pre-trained representations. Overall, our approach surpasses the masked pre-training SSL method by a substantial margin of 17.1% on the RMSE. Moreover, even without utilizing any recently proposed techniques, MeSa also outperforms the most recent methods and establishes a new state-of-the-art for monocular depth estimation on the challenging NYUv2 dataset.

Cite this Paper


BibTeX
@InProceedings{pmlr-v243-khan24a, title = {MeSa: Masked, Geometric, and Supervised Pre-training for Monocular Depth Estimation}, author = {Khan, Muhammad Osama and Liang, Junbang and Wang, Chun-Kai and Yang, Shan and Lou, Yu}, booktitle = {Proceedings of UniReps: the First Workshop on Unifying Representations in Neural Models}, pages = {116--132}, year = {2024}, editor = {Fumero, Marco and Rodolá, Emanuele and Domine, Clementine and Locatello, Francesco and Dziugaite, Karolina and Mathilde, Caron}, volume = {243}, series = {Proceedings of Machine Learning Research}, month = {15 Dec}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v243/khan24a/khan24a.pdf}, url = {https://proceedings.mlr.press/v243/khan24a.html}, abstract = {Pre-training has been an important ingredient in developing strong monocular depth estimation models in recent years. For instance, self-supervised learning (SSL) is particularly effective by alleviating the need for large datasets with dense ground-truth depth maps. However, despite these improvements, our study reveals that the later layers of the SOTA SSL method are actually suboptimal. By examining the layer-wise representations, we demonstrate significant changes in these later layers during fine-tuning, indicating the ineffectiveness of their pre-trained features for depth estimation. To address these limitations, we propose MeSa, a unified framework that leverages the complementary strengths of masked, geometric, and supervised pre-training. Hence, MeSa benefits from not only general-purpose representations learnt via masked pre-training but also specialized depth-specific features acquired via geometric and supervised pre-training. Our CKA layer-wise analysis confirms that our pre-training strategy indeed produces improved representations for the later layers, overcoming the drawbacks of the SOTA SSL method. Furthermore, via experiments on the NYUv2 and IBims-1 datasets, we demonstrate that these enhanced representations translate to performance improvements in both the in-distribution and out-of-distribution settings. We also investigate the influence of the pre-training dataset and demonstrate the efficacy of pre-training on LSUN, which yields significantly better pre-trained representations. Overall, our approach surpasses the masked pre-training SSL method by a substantial margin of 17.1% on the RMSE. Moreover, even without utilizing any recently proposed techniques, MeSa also outperforms the most recent methods and establishes a new state-of-the-art for monocular depth estimation on the challenging NYUv2 dataset.} }
Endnote
%0 Conference Paper %T MeSa: Masked, Geometric, and Supervised Pre-training for Monocular Depth Estimation %A Muhammad Osama Khan %A Junbang Liang %A Chun-Kai Wang %A Shan Yang %A Yu Lou %B Proceedings of UniReps: the First Workshop on Unifying Representations in Neural Models %C Proceedings of Machine Learning Research %D 2024 %E Marco Fumero %E Emanuele Rodolá %E Clementine Domine %E Francesco Locatello %E Karolina Dziugaite %E Caron Mathilde %F pmlr-v243-khan24a %I PMLR %P 116--132 %U https://proceedings.mlr.press/v243/khan24a.html %V 243 %X Pre-training has been an important ingredient in developing strong monocular depth estimation models in recent years. For instance, self-supervised learning (SSL) is particularly effective by alleviating the need for large datasets with dense ground-truth depth maps. However, despite these improvements, our study reveals that the later layers of the SOTA SSL method are actually suboptimal. By examining the layer-wise representations, we demonstrate significant changes in these later layers during fine-tuning, indicating the ineffectiveness of their pre-trained features for depth estimation. To address these limitations, we propose MeSa, a unified framework that leverages the complementary strengths of masked, geometric, and supervised pre-training. Hence, MeSa benefits from not only general-purpose representations learnt via masked pre-training but also specialized depth-specific features acquired via geometric and supervised pre-training. Our CKA layer-wise analysis confirms that our pre-training strategy indeed produces improved representations for the later layers, overcoming the drawbacks of the SOTA SSL method. Furthermore, via experiments on the NYUv2 and IBims-1 datasets, we demonstrate that these enhanced representations translate to performance improvements in both the in-distribution and out-of-distribution settings. We also investigate the influence of the pre-training dataset and demonstrate the efficacy of pre-training on LSUN, which yields significantly better pre-trained representations. Overall, our approach surpasses the masked pre-training SSL method by a substantial margin of 17.1% on the RMSE. Moreover, even without utilizing any recently proposed techniques, MeSa also outperforms the most recent methods and establishes a new state-of-the-art for monocular depth estimation on the challenging NYUv2 dataset.
APA
Khan, M.O., Liang, J., Wang, C., Yang, S. & Lou, Y.. (2024). MeSa: Masked, Geometric, and Supervised Pre-training for Monocular Depth Estimation. Proceedings of UniReps: the First Workshop on Unifying Representations in Neural Models, in Proceedings of Machine Learning Research 243:116-132 Available from https://proceedings.mlr.press/v243/khan24a.html.

Related Material