Learning Accurate and Interpretable Decision Trees

Maria-Florina Balcan, Dravyansh Sharma
Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:288-307, 2024.

Abstract

Decision trees are a popular tool in machine learning and yield easy-to-understand models. Several techniques have been proposed in the literature for learning a decision tree classifier, with different techniques working well for data from different domains. In this work, we develop approaches to design decision tree learning algorithms given repeated access to data from the same domain. We propose novel parameterized classes of node splitting criteria in top-down algorithms, which interpolate between popularly used entropy and Gini impurity based criteria, and provide theoretical bounds on the number of samples needed to learn the splitting function appropriate for the data at hand. We also study the sample complexity of tuning prior parameters in Bayesian decision tree learning, and extend our results to decision tree regression. We further consider the problem of tuning hyperparameters in pruning the decision tree for classical pruning algorithms including min-cost complexity pruning. We also study the interpretability of the learned decision trees and introduce a data-driven approach for optimizing the explainability versus accuracy trade-off using decision trees. Finally, we demonstrate the significance of our approach on real world datasets by learning data-specific decision trees which are simultaneously more accurate and interpretable.

Cite this Paper


BibTeX
@InProceedings{pmlr-v244-balcan24a, title = {Learning Accurate and Interpretable Decision Trees}, author = {Balcan, Maria-Florina and Sharma, Dravyansh}, booktitle = {Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence}, pages = {288--307}, year = {2024}, editor = {Kiyavash, Negar and Mooij, Joris M.}, volume = {244}, series = {Proceedings of Machine Learning Research}, month = {15--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v244/main/assets/balcan24a/balcan24a.pdf}, url = {https://proceedings.mlr.press/v244/balcan24a.html}, abstract = {Decision trees are a popular tool in machine learning and yield easy-to-understand models. Several techniques have been proposed in the literature for learning a decision tree classifier, with different techniques working well for data from different domains. In this work, we develop approaches to design decision tree learning algorithms given repeated access to data from the same domain. We propose novel parameterized classes of node splitting criteria in top-down algorithms, which interpolate between popularly used entropy and Gini impurity based criteria, and provide theoretical bounds on the number of samples needed to learn the splitting function appropriate for the data at hand. We also study the sample complexity of tuning prior parameters in Bayesian decision tree learning, and extend our results to decision tree regression. We further consider the problem of tuning hyperparameters in pruning the decision tree for classical pruning algorithms including min-cost complexity pruning. We also study the interpretability of the learned decision trees and introduce a data-driven approach for optimizing the explainability versus accuracy trade-off using decision trees. Finally, we demonstrate the significance of our approach on real world datasets by learning data-specific decision trees which are simultaneously more accurate and interpretable.} }
Endnote
%0 Conference Paper %T Learning Accurate and Interpretable Decision Trees %A Maria-Florina Balcan %A Dravyansh Sharma %B Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence %C Proceedings of Machine Learning Research %D 2024 %E Negar Kiyavash %E Joris M. Mooij %F pmlr-v244-balcan24a %I PMLR %P 288--307 %U https://proceedings.mlr.press/v244/balcan24a.html %V 244 %X Decision trees are a popular tool in machine learning and yield easy-to-understand models. Several techniques have been proposed in the literature for learning a decision tree classifier, with different techniques working well for data from different domains. In this work, we develop approaches to design decision tree learning algorithms given repeated access to data from the same domain. We propose novel parameterized classes of node splitting criteria in top-down algorithms, which interpolate between popularly used entropy and Gini impurity based criteria, and provide theoretical bounds on the number of samples needed to learn the splitting function appropriate for the data at hand. We also study the sample complexity of tuning prior parameters in Bayesian decision tree learning, and extend our results to decision tree regression. We further consider the problem of tuning hyperparameters in pruning the decision tree for classical pruning algorithms including min-cost complexity pruning. We also study the interpretability of the learned decision trees and introduce a data-driven approach for optimizing the explainability versus accuracy trade-off using decision trees. Finally, we demonstrate the significance of our approach on real world datasets by learning data-specific decision trees which are simultaneously more accurate and interpretable.
APA
Balcan, M. & Sharma, D.. (2024). Learning Accurate and Interpretable Decision Trees. Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, in Proceedings of Machine Learning Research 244:288-307 Available from https://proceedings.mlr.press/v244/balcan24a.html.

Related Material