DistriBlock: Identifying adversarial audio samples by leveraging characteristics of the output distribution

Matı́as Pizarro, Dorothea Kolossa, Asja Fisher
Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:2956-2988, 2024.

Abstract

Adversarial attacks can mislead automatic speech recognition (ASR) systems into predicting an arbitrary target text, thus posing a clear security threat. To prevent such attacks, we propose DistriBlock, an efficient detection strategy applicable to any ASR system that predicts a probability distribution over output tokens in each time step. We measure a set of characteristics of this distribution: the median, maximum, and minimum over the output probabilities, the entropy of the distribution, as well as the Kullback-Leibler and the Jensen-Shannon divergence with respect to the distributions of the subsequent time step. Then, by leveraging the characteristics observed for both benign and adversarial data, we apply binary classifiers, including simple threshold-based classification, ensembles of such classifiers, and neural networks. Through extensive analysis across different state-of-the-art ASR systems and language data sets, we demonstrate the supreme performance of this approach, with a mean area under the receiver operating characteristic curve for distinguishing target adversarial examples against clean and noisy data of 99% and 97%, respectively. To assess the robustness of our method, we show that adaptive adversarial examples that can circumvent DistriBlock are much noisier, which makes them easier to detect through filtering and creates another avenue for preserving the system’s robustness.ics of this distribution: the median, maximum, and minimum over the output probabilities, the entropy of the distribution, as well as the Kullback-Leibler and the Jensen-Shannon divergence with respect to the distributions of the subsequent time step. Then, by leveraging the characteristics observed for both benign and adversarial data, we apply binary classifiers, including simple threshold-based classification, ensembles of such classifiers, and neural networks. Through extensive analysis across different state-of-the-art ASR systems and language data sets, we demonstrate the supreme performance of this approach, with a mean area under the receiver operating characteristic for distinguishing target adversarial examples against clean and noisy data of 99% and 97%, respectively. To assess the robustness of our method, we show that adaptive adversarial examples that can circumvent DistriBlock are much noisier, which makes them easier to detect through filtering and creates another avenue for preserving the system’s robustness.

Cite this Paper


BibTeX
@InProceedings{pmlr-v244-pizarro24a, title = {DistriBlock: Identifying adversarial audio samples by leveraging characteristics of the output distribution}, author = {Pizarro, Mat{\'\i}as and Kolossa, Dorothea and Fisher, Asja}, booktitle = {Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence}, pages = {2956--2988}, year = {2024}, editor = {Kiyavash, Negar and Mooij, Joris M.}, volume = {244}, series = {Proceedings of Machine Learning Research}, month = {15--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v244/main/assets/pizarro24a/pizarro24a.pdf}, url = {https://proceedings.mlr.press/v244/pizarro24a.html}, abstract = {Adversarial attacks can mislead automatic speech recognition (ASR) systems into predicting an arbitrary target text, thus posing a clear security threat. To prevent such attacks, we propose DistriBlock, an efficient detection strategy applicable to any ASR system that predicts a probability distribution over output tokens in each time step. We measure a set of characteristics of this distribution: the median, maximum, and minimum over the output probabilities, the entropy of the distribution, as well as the Kullback-Leibler and the Jensen-Shannon divergence with respect to the distributions of the subsequent time step. Then, by leveraging the characteristics observed for both benign and adversarial data, we apply binary classifiers, including simple threshold-based classification, ensembles of such classifiers, and neural networks. Through extensive analysis across different state-of-the-art ASR systems and language data sets, we demonstrate the supreme performance of this approach, with a mean area under the receiver operating characteristic curve for distinguishing target adversarial examples against clean and noisy data of 99% and 97%, respectively. To assess the robustness of our method, we show that adaptive adversarial examples that can circumvent DistriBlock are much noisier, which makes them easier to detect through filtering and creates another avenue for preserving the system’s robustness.ics of this distribution: the median, maximum, and minimum over the output probabilities, the entropy of the distribution, as well as the Kullback-Leibler and the Jensen-Shannon divergence with respect to the distributions of the subsequent time step. Then, by leveraging the characteristics observed for both benign and adversarial data, we apply binary classifiers, including simple threshold-based classification, ensembles of such classifiers, and neural networks. Through extensive analysis across different state-of-the-art ASR systems and language data sets, we demonstrate the supreme performance of this approach, with a mean area under the receiver operating characteristic for distinguishing target adversarial examples against clean and noisy data of 99% and 97%, respectively. To assess the robustness of our method, we show that adaptive adversarial examples that can circumvent DistriBlock are much noisier, which makes them easier to detect through filtering and creates another avenue for preserving the system’s robustness.} }
Endnote
%0 Conference Paper %T DistriBlock: Identifying adversarial audio samples by leveraging characteristics of the output distribution %A Matı́as Pizarro %A Dorothea Kolossa %A Asja Fisher %B Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence %C Proceedings of Machine Learning Research %D 2024 %E Negar Kiyavash %E Joris M. Mooij %F pmlr-v244-pizarro24a %I PMLR %P 2956--2988 %U https://proceedings.mlr.press/v244/pizarro24a.html %V 244 %X Adversarial attacks can mislead automatic speech recognition (ASR) systems into predicting an arbitrary target text, thus posing a clear security threat. To prevent such attacks, we propose DistriBlock, an efficient detection strategy applicable to any ASR system that predicts a probability distribution over output tokens in each time step. We measure a set of characteristics of this distribution: the median, maximum, and minimum over the output probabilities, the entropy of the distribution, as well as the Kullback-Leibler and the Jensen-Shannon divergence with respect to the distributions of the subsequent time step. Then, by leveraging the characteristics observed for both benign and adversarial data, we apply binary classifiers, including simple threshold-based classification, ensembles of such classifiers, and neural networks. Through extensive analysis across different state-of-the-art ASR systems and language data sets, we demonstrate the supreme performance of this approach, with a mean area under the receiver operating characteristic curve for distinguishing target adversarial examples against clean and noisy data of 99% and 97%, respectively. To assess the robustness of our method, we show that adaptive adversarial examples that can circumvent DistriBlock are much noisier, which makes them easier to detect through filtering and creates another avenue for preserving the system’s robustness.ics of this distribution: the median, maximum, and minimum over the output probabilities, the entropy of the distribution, as well as the Kullback-Leibler and the Jensen-Shannon divergence with respect to the distributions of the subsequent time step. Then, by leveraging the characteristics observed for both benign and adversarial data, we apply binary classifiers, including simple threshold-based classification, ensembles of such classifiers, and neural networks. Through extensive analysis across different state-of-the-art ASR systems and language data sets, we demonstrate the supreme performance of this approach, with a mean area under the receiver operating characteristic for distinguishing target adversarial examples against clean and noisy data of 99% and 97%, respectively. To assess the robustness of our method, we show that adaptive adversarial examples that can circumvent DistriBlock are much noisier, which makes them easier to detect through filtering and creates another avenue for preserving the system’s robustness.
APA
Pizarro, M., Kolossa, D. & Fisher, A.. (2024). DistriBlock: Identifying adversarial audio samples by leveraging characteristics of the output distribution. Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, in Proceedings of Machine Learning Research 244:2956-2988 Available from https://proceedings.mlr.press/v244/pizarro24a.html.

Related Material