Graph Contrastive Learning under Heterophily via Graph Filters

Wenhan Yang, Baharan Mirzasoleiman
Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:3936-3955, 2024.

Abstract

Graph contrastive learning (CL) methods learn node representations in a self-supervised manner by maximizing the similarity between the augmented node representations obtained via a GNN-based encoder. However, CL methods perform poorly on graphs with heterophily, where connected nodes tend to belong to different classes. In this work, we address this problem by proposing an effective graph CL method, namely HLCL, for learning graph representations under heterophily. HLCL first identifies a homophilic and a heterophilic subgraph based on the cosine similarity of node features. It then uses a low-pass and a high-pass graph filter to aggregate representations of nodes connected in the homophilic subgraph and differentiate representations of nodes in the heterophilic subgraph. The final node representations are learned by contrasting both the augmented high-pass filtered views and the augmented low-pass filtered node views. Our extensive experiments show that HLCL outperforms state-of-the-art graph CL methods on benchmark datasets with heterophily, as well as large-scale real-world graphs, by up to 7%, and outperforms graph supervised learning methods on datasets with heterophily by up to 10%.

Cite this Paper


BibTeX
@InProceedings{pmlr-v244-yang24a, title = {Graph Contrastive Learning under Heterophily via Graph Filters}, author = {Yang, Wenhan and Mirzasoleiman, Baharan}, booktitle = {Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence}, pages = {3936--3955}, year = {2024}, editor = {Kiyavash, Negar and Mooij, Joris M.}, volume = {244}, series = {Proceedings of Machine Learning Research}, month = {15--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v244/main/assets/yang24a/yang24a.pdf}, url = {https://proceedings.mlr.press/v244/yang24a.html}, abstract = {Graph contrastive learning (CL) methods learn node representations in a self-supervised manner by maximizing the similarity between the augmented node representations obtained via a GNN-based encoder. However, CL methods perform poorly on graphs with heterophily, where connected nodes tend to belong to different classes. In this work, we address this problem by proposing an effective graph CL method, namely HLCL, for learning graph representations under heterophily. HLCL first identifies a homophilic and a heterophilic subgraph based on the cosine similarity of node features. It then uses a low-pass and a high-pass graph filter to aggregate representations of nodes connected in the homophilic subgraph and differentiate representations of nodes in the heterophilic subgraph. The final node representations are learned by contrasting both the augmented high-pass filtered views and the augmented low-pass filtered node views. Our extensive experiments show that HLCL outperforms state-of-the-art graph CL methods on benchmark datasets with heterophily, as well as large-scale real-world graphs, by up to 7%, and outperforms graph supervised learning methods on datasets with heterophily by up to 10%.} }
Endnote
%0 Conference Paper %T Graph Contrastive Learning under Heterophily via Graph Filters %A Wenhan Yang %A Baharan Mirzasoleiman %B Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence %C Proceedings of Machine Learning Research %D 2024 %E Negar Kiyavash %E Joris M. Mooij %F pmlr-v244-yang24a %I PMLR %P 3936--3955 %U https://proceedings.mlr.press/v244/yang24a.html %V 244 %X Graph contrastive learning (CL) methods learn node representations in a self-supervised manner by maximizing the similarity between the augmented node representations obtained via a GNN-based encoder. However, CL methods perform poorly on graphs with heterophily, where connected nodes tend to belong to different classes. In this work, we address this problem by proposing an effective graph CL method, namely HLCL, for learning graph representations under heterophily. HLCL first identifies a homophilic and a heterophilic subgraph based on the cosine similarity of node features. It then uses a low-pass and a high-pass graph filter to aggregate representations of nodes connected in the homophilic subgraph and differentiate representations of nodes in the heterophilic subgraph. The final node representations are learned by contrasting both the augmented high-pass filtered views and the augmented low-pass filtered node views. Our extensive experiments show that HLCL outperforms state-of-the-art graph CL methods on benchmark datasets with heterophily, as well as large-scale real-world graphs, by up to 7%, and outperforms graph supervised learning methods on datasets with heterophily by up to 10%.
APA
Yang, W. & Mirzasoleiman, B.. (2024). Graph Contrastive Learning under Heterophily via Graph Filters. Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, in Proceedings of Machine Learning Research 244:3936-3955 Available from https://proceedings.mlr.press/v244/yang24a.html.

Related Material