[edit]
Ships Collision Avoidance Based on Quadrangle Ship Domain and Reciprocal Velocity Obstacle
Proceedings of 2024 International Conference on Machine Learning and Intelligent Computing, PMLR 245:280-289, 2024.
Abstract
Navigating the narrow and congested waters of the Yangtze River in China poses a significant challenge, leading to frequent ship-ship and ship-buoy collisions. In most cases of collisions between ships and buoys, the ship often hits and runs. This paper introduces a novel collision-avoidance decision method that employs the RVO (Reciprocal Velocity Obstacles) and QSD (Quantitative Ship Domain) to enable dynamic obstacle avoidance for ship-to-buoy and ship-to-ship, which complies with conventions on the international regulation for preventing collision at sea. QSD can dynamically adjust the ship domain model according to different speeds to address different encounter situations. The combination of RVO and QSD combines the dynamic ship domain with the obstacle avoidance algorithm, which makes the water transport safer than the traditional obstacle avoidance algorithm. In addition, this paper also compares the effects of VO (Velocity obstacle) and RVO, and the results indicate that RVO has smoother obstacle avoidance.