Black-Box k-to-1-PCA Reductions: Theory and Applications

Arun Jambulapati, Syamantak Kumar, Jerry Li, Shourya Pandey, Ankit Pensia, Kevin Tian
Proceedings of Thirty Seventh Conference on Learning Theory, PMLR 247:2564-2607, 2024.

Abstract

The $k$-principal component analysis ($k$-PCA) problem is a fundamental algorithmic primitive that is widely-used in data analysis and dimensionality reduction applications. In statistical settings, the goal of $k$-PCA is to identify a top eigenspace of the covariance matrix of a distribution, which we only have black-box access to via samples. Motivated by these settings, we analyze black-box deflation methods as a framework for designing $k$-PCA algorithms, where we model access to the unknown target matrix via a black-box $1$-PCA oracle which returns an approximate top eigenvector, under two popular notions of approximation. Despite being arguably the most natural reduction-based approach to $k$-PCA algorithm design, such black-box methods, which recursively call a $1$-PCA oracle $k$ times, were previously poorly-understood. Our main contribution is significantly sharper bounds on the approximation parameter degradation of deflation methods for $k$-PCA. For a quadratic form notion of approximation we term ePCA (energy PCA), we show deflation methods suffer no parameter loss. For an alternative well-studied approximation notion we term cPCA (correlation PCA), we tightly characterize the parameter regimes where deflation methods are feasible. Moreover, we show that in all feasible regimes, $k$-cPCA deflation algorithms suffer no asymptotic parameter loss for any constant $k$. We apply our framework to obtain state-of-the-art $k$-PCA algorithms robust to dataset contamination, improving prior work in sample complexity by a $\mathsf{poly}(k)$ factor.

Cite this Paper


BibTeX
@InProceedings{pmlr-v247-jambulapati24a, title = {Black-Box k-to-1-PCA Reductions: Theory and Applications}, author = {Jambulapati, Arun and Kumar, Syamantak and Li, Jerry and Pandey, Shourya and Pensia, Ankit and Tian, Kevin}, booktitle = {Proceedings of Thirty Seventh Conference on Learning Theory}, pages = {2564--2607}, year = {2024}, editor = {Agrawal, Shipra and Roth, Aaron}, volume = {247}, series = {Proceedings of Machine Learning Research}, month = {30 Jun--03 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v247/jambulapati24a/jambulapati24a.pdf}, url = {https://proceedings.mlr.press/v247/jambulapati24a.html}, abstract = {The $k$-principal component analysis ($k$-PCA) problem is a fundamental algorithmic primitive that is widely-used in data analysis and dimensionality reduction applications. In statistical settings, the goal of $k$-PCA is to identify a top eigenspace of the covariance matrix of a distribution, which we only have black-box access to via samples. Motivated by these settings, we analyze black-box deflation methods as a framework for designing $k$-PCA algorithms, where we model access to the unknown target matrix via a black-box $1$-PCA oracle which returns an approximate top eigenvector, under two popular notions of approximation. Despite being arguably the most natural reduction-based approach to $k$-PCA algorithm design, such black-box methods, which recursively call a $1$-PCA oracle $k$ times, were previously poorly-understood. Our main contribution is significantly sharper bounds on the approximation parameter degradation of deflation methods for $k$-PCA. For a quadratic form notion of approximation we term ePCA (energy PCA), we show deflation methods suffer no parameter loss. For an alternative well-studied approximation notion we term cPCA (correlation PCA), we tightly characterize the parameter regimes where deflation methods are feasible. Moreover, we show that in all feasible regimes, $k$-cPCA deflation algorithms suffer no asymptotic parameter loss for any constant $k$. We apply our framework to obtain state-of-the-art $k$-PCA algorithms robust to dataset contamination, improving prior work in sample complexity by a $\mathsf{poly}(k)$ factor.} }
Endnote
%0 Conference Paper %T Black-Box k-to-1-PCA Reductions: Theory and Applications %A Arun Jambulapati %A Syamantak Kumar %A Jerry Li %A Shourya Pandey %A Ankit Pensia %A Kevin Tian %B Proceedings of Thirty Seventh Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2024 %E Shipra Agrawal %E Aaron Roth %F pmlr-v247-jambulapati24a %I PMLR %P 2564--2607 %U https://proceedings.mlr.press/v247/jambulapati24a.html %V 247 %X The $k$-principal component analysis ($k$-PCA) problem is a fundamental algorithmic primitive that is widely-used in data analysis and dimensionality reduction applications. In statistical settings, the goal of $k$-PCA is to identify a top eigenspace of the covariance matrix of a distribution, which we only have black-box access to via samples. Motivated by these settings, we analyze black-box deflation methods as a framework for designing $k$-PCA algorithms, where we model access to the unknown target matrix via a black-box $1$-PCA oracle which returns an approximate top eigenvector, under two popular notions of approximation. Despite being arguably the most natural reduction-based approach to $k$-PCA algorithm design, such black-box methods, which recursively call a $1$-PCA oracle $k$ times, were previously poorly-understood. Our main contribution is significantly sharper bounds on the approximation parameter degradation of deflation methods for $k$-PCA. For a quadratic form notion of approximation we term ePCA (energy PCA), we show deflation methods suffer no parameter loss. For an alternative well-studied approximation notion we term cPCA (correlation PCA), we tightly characterize the parameter regimes where deflation methods are feasible. Moreover, we show that in all feasible regimes, $k$-cPCA deflation algorithms suffer no asymptotic parameter loss for any constant $k$. We apply our framework to obtain state-of-the-art $k$-PCA algorithms robust to dataset contamination, improving prior work in sample complexity by a $\mathsf{poly}(k)$ factor.
APA
Jambulapati, A., Kumar, S., Li, J., Pandey, S., Pensia, A. & Tian, K.. (2024). Black-Box k-to-1-PCA Reductions: Theory and Applications. Proceedings of Thirty Seventh Conference on Learning Theory, in Proceedings of Machine Learning Research 247:2564-2607 Available from https://proceedings.mlr.press/v247/jambulapati24a.html.

Related Material