A non-backtracking method for long matrix and tensor completion

Ludovic Stephan, Yizhe Zhu
Proceedings of Thirty Seventh Conference on Learning Theory, PMLR 247:4636-4690, 2024.

Abstract

We consider the problem of low-rank rectangular matrix completion in the regime where the matrix $M$ of size $n\times m$ is “long", i.e., the aspect ratio $m/n$ diverges to infinity. Such matrices are of particular interest in the study of tensor completion, where they arise from the unfolding of a low-rank tensor. In the case where the sampling probability is $\frac{d}{\sqrt{mn}}$, we propose a new spectral algorithm for recovering the singular values and left singular vectors of the original matrix $M$ based on a variant of the standard non-backtracking operator of a suitably defined bipartite weighted random graph, which we call a \textit{non-backtracking wedge operator}. When $d$ is above a Kesten-Stigum-type sampling threshold, our algorithm recovers a correlated version of the singular value decomposition of $M$ with quantifiable error bounds. This is the first result in the regime of bounded $d$ for weak recovery and the first for weak consistency when $d\to\infty$ arbitrarily slowly without any polylog factors. As an application, for low-CP-rank orthogonal $k$-tensor completion, we efficiently achieve weak recovery with sample size $O(n^{k/2})$ and weak consistency with sample size $\omega(n^{k/2})$. A similar result is obtained for low-multilinear-rank tensor completion with $O(n^{k/2})$ many samples.

Cite this Paper


BibTeX
@InProceedings{pmlr-v247-stephan24a, title = {A non-backtracking method for long matrix and tensor completion}, author = {Stephan, Ludovic and Zhu, Yizhe}, booktitle = {Proceedings of Thirty Seventh Conference on Learning Theory}, pages = {4636--4690}, year = {2024}, editor = {Agrawal, Shipra and Roth, Aaron}, volume = {247}, series = {Proceedings of Machine Learning Research}, month = {30 Jun--03 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v247/stephan24a/stephan24a.pdf}, url = {https://proceedings.mlr.press/v247/stephan24a.html}, abstract = { We consider the problem of low-rank rectangular matrix completion in the regime where the matrix $M$ of size $n\times m$ is “long", i.e., the aspect ratio $m/n$ diverges to infinity. Such matrices are of particular interest in the study of tensor completion, where they arise from the unfolding of a low-rank tensor. In the case where the sampling probability is $\frac{d}{\sqrt{mn}}$, we propose a new spectral algorithm for recovering the singular values and left singular vectors of the original matrix $M$ based on a variant of the standard non-backtracking operator of a suitably defined bipartite weighted random graph, which we call a \textit{non-backtracking wedge operator}. When $d$ is above a Kesten-Stigum-type sampling threshold, our algorithm recovers a correlated version of the singular value decomposition of $M$ with quantifiable error bounds. This is the first result in the regime of bounded $d$ for weak recovery and the first for weak consistency when $d\to\infty$ arbitrarily slowly without any polylog factors. As an application, for low-CP-rank orthogonal $k$-tensor completion, we efficiently achieve weak recovery with sample size $O(n^{k/2})$ and weak consistency with sample size $\omega(n^{k/2})$. A similar result is obtained for low-multilinear-rank tensor completion with $O(n^{k/2})$ many samples.} }
Endnote
%0 Conference Paper %T A non-backtracking method for long matrix and tensor completion %A Ludovic Stephan %A Yizhe Zhu %B Proceedings of Thirty Seventh Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2024 %E Shipra Agrawal %E Aaron Roth %F pmlr-v247-stephan24a %I PMLR %P 4636--4690 %U https://proceedings.mlr.press/v247/stephan24a.html %V 247 %X We consider the problem of low-rank rectangular matrix completion in the regime where the matrix $M$ of size $n\times m$ is “long", i.e., the aspect ratio $m/n$ diverges to infinity. Such matrices are of particular interest in the study of tensor completion, where they arise from the unfolding of a low-rank tensor. In the case where the sampling probability is $\frac{d}{\sqrt{mn}}$, we propose a new spectral algorithm for recovering the singular values and left singular vectors of the original matrix $M$ based on a variant of the standard non-backtracking operator of a suitably defined bipartite weighted random graph, which we call a \textit{non-backtracking wedge operator}. When $d$ is above a Kesten-Stigum-type sampling threshold, our algorithm recovers a correlated version of the singular value decomposition of $M$ with quantifiable error bounds. This is the first result in the regime of bounded $d$ for weak recovery and the first for weak consistency when $d\to\infty$ arbitrarily slowly without any polylog factors. As an application, for low-CP-rank orthogonal $k$-tensor completion, we efficiently achieve weak recovery with sample size $O(n^{k/2})$ and weak consistency with sample size $\omega(n^{k/2})$. A similar result is obtained for low-multilinear-rank tensor completion with $O(n^{k/2})$ many samples.
APA
Stephan, L. & Zhu, Y.. (2024). A non-backtracking method for long matrix and tensor completion. Proceedings of Thirty Seventh Conference on Learning Theory, in Proceedings of Machine Learning Research 247:4636-4690 Available from https://proceedings.mlr.press/v247/stephan24a.html.

Related Material