Regulating AI Adaptation: An Analysis of AI Medical Device Updates

Kevin Wu, Eric Wu, Kit Rodolfa, Daniel E Ho, James Zou
Proceedings of the fifth Conference on Health, Inference, and Learning, PMLR 248:477-488, 2024.

Abstract

While the pace of development of AI has rapidly progressed in recent years, the implementation of safe and effective regulatory frameworks has lagged behind. In particular, the adaptive nature of AI models presents unique challenges to regulators as updating a model can improve its performance but also introduce safety risks. In the US, the Food and Drug Administration (FDA) has been a forerunner in regulating and approving hundreds of AI medical devices. To better understand how AI is updated and its regulatory considerations, we systematically analyze the frequency and nature of updates in FDA-approved AI medical devices. We find that less than 2% of all devices report having been updated by being re-trained on new data. Meanwhile, nearly a quarter of devices report updates in the form of new functionality and marketing claims. As an illustrative case study, we analyze pneumothorax detection models and find that while model performance can degrade by as much as 0.18 AUC when evaluated on new sites, re-training on site-specific data can mitigate this performance drop, recovering up to 0.23 AUC. However, we also observed significant degradation on the original site after re-training using data from new sites, providing insight from one example that challenges the current one-model-fits-all approach to regulatory approvals. Our analysis provides an in-depth look at the current state of FDA-approved AI device updates and insights for future regulatory policies toward model updating and adaptive AI.

Cite this Paper


BibTeX
@InProceedings{pmlr-v248-wu24a, title = {Regulating AI Adaptation: An Analysis of AI Medical Device Updates}, author = {Wu, Kevin and Wu, Eric and Rodolfa, Kit and Ho, Daniel E and Zou, James}, booktitle = {Proceedings of the fifth Conference on Health, Inference, and Learning}, pages = {477--488}, year = {2024}, editor = {Pollard, Tom and Choi, Edward and Singhal, Pankhuri and Hughes, Michael and Sizikova, Elena and Mortazavi, Bobak and Chen, Irene and Wang, Fei and Sarker, Tasmie and McDermott, Matthew and Ghassemi, Marzyeh}, volume = {248}, series = {Proceedings of Machine Learning Research}, month = {27--28 Jun}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v248/main/assets/wu24a/wu24a.pdf}, url = {https://proceedings.mlr.press/v248/wu24a.html}, abstract = {While the pace of development of AI has rapidly progressed in recent years, the implementation of safe and effective regulatory frameworks has lagged behind. In particular, the adaptive nature of AI models presents unique challenges to regulators as updating a model can improve its performance but also introduce safety risks. In the US, the Food and Drug Administration (FDA) has been a forerunner in regulating and approving hundreds of AI medical devices. To better understand how AI is updated and its regulatory considerations, we systematically analyze the frequency and nature of updates in FDA-approved AI medical devices. We find that less than 2% of all devices report having been updated by being re-trained on new data. Meanwhile, nearly a quarter of devices report updates in the form of new functionality and marketing claims. As an illustrative case study, we analyze pneumothorax detection models and find that while model performance can degrade by as much as 0.18 AUC when evaluated on new sites, re-training on site-specific data can mitigate this performance drop, recovering up to 0.23 AUC. However, we also observed significant degradation on the original site after re-training using data from new sites, providing insight from one example that challenges the current one-model-fits-all approach to regulatory approvals. Our analysis provides an in-depth look at the current state of FDA-approved AI device updates and insights for future regulatory policies toward model updating and adaptive AI.} }
Endnote
%0 Conference Paper %T Regulating AI Adaptation: An Analysis of AI Medical Device Updates %A Kevin Wu %A Eric Wu %A Kit Rodolfa %A Daniel E Ho %A James Zou %B Proceedings of the fifth Conference on Health, Inference, and Learning %C Proceedings of Machine Learning Research %D 2024 %E Tom Pollard %E Edward Choi %E Pankhuri Singhal %E Michael Hughes %E Elena Sizikova %E Bobak Mortazavi %E Irene Chen %E Fei Wang %E Tasmie Sarker %E Matthew McDermott %E Marzyeh Ghassemi %F pmlr-v248-wu24a %I PMLR %P 477--488 %U https://proceedings.mlr.press/v248/wu24a.html %V 248 %X While the pace of development of AI has rapidly progressed in recent years, the implementation of safe and effective regulatory frameworks has lagged behind. In particular, the adaptive nature of AI models presents unique challenges to regulators as updating a model can improve its performance but also introduce safety risks. In the US, the Food and Drug Administration (FDA) has been a forerunner in regulating and approving hundreds of AI medical devices. To better understand how AI is updated and its regulatory considerations, we systematically analyze the frequency and nature of updates in FDA-approved AI medical devices. We find that less than 2% of all devices report having been updated by being re-trained on new data. Meanwhile, nearly a quarter of devices report updates in the form of new functionality and marketing claims. As an illustrative case study, we analyze pneumothorax detection models and find that while model performance can degrade by as much as 0.18 AUC when evaluated on new sites, re-training on site-specific data can mitigate this performance drop, recovering up to 0.23 AUC. However, we also observed significant degradation on the original site after re-training using data from new sites, providing insight from one example that challenges the current one-model-fits-all approach to regulatory approvals. Our analysis provides an in-depth look at the current state of FDA-approved AI device updates and insights for future regulatory policies toward model updating and adaptive AI.
APA
Wu, K., Wu, E., Rodolfa, K., Ho, D.E. & Zou, J.. (2024). Regulating AI Adaptation: An Analysis of AI Medical Device Updates. Proceedings of the fifth Conference on Health, Inference, and Learning, in Proceedings of Machine Learning Research 248:477-488 Available from https://proceedings.mlr.press/v248/wu24a.html.

Related Material