The Multiscale Surface Vision Transformer

Simon Dahan, Logan Zane John Williams, Daniel Rueckert, Emma Claire Robinson
Proceedings of The 7nd International Conference on Medical Imaging with Deep Learning, PMLR 250:289-305, 2024.

Abstract

Surface meshes are a favoured domain for representing structural and functional information on the human cortex, but their complex topology and geometry pose significant challenges for deep learning analysis. While Transformers have excelled as domain-agnostic architectures for sequence-to-sequence learning, the quadratic cost of the self-attention operation remains an obstacle for many dense prediction tasks. Inspired by some of the latest advances in hierarchical modelling with vision transformers, we introduce the Multiscale Surface Vision Transformer (MS-SiT) as a backbone architecture for surface deep learning. The self-attention mechanism is applied within local-mesh-windows to allow for high-resolution sampling of the underlying data, while a shifted-window strategy improves the sharing of information between windows. Neighbouring patches are successively merged, allowing the MS-SiT to learn hierarchical representations suitable for any prediction task. Results demonstrate that the MS-SiT outperforms existing surface deep learning methods for neonatal phenotyping prediction tasks using the Developing Human Connectome Project (dHCP) dataset. Furthermore, building the MS-SiT backbone into a U-shaped architecture for surface segmentation demonstrates competitive results on cortical parcellation using the UK Biobank (UKB) and manually-annotated MindBoggle datasets. Code and trained models are publicly available at https://github.com/metrics-lab/surface-vision-transformers.

Cite this Paper


BibTeX
@InProceedings{pmlr-v250-dahan24a, title = {The Multiscale Surface Vision Transformer}, author = {Dahan, Simon and Williams, Logan Zane John and Rueckert, Daniel and Robinson, Emma Claire}, booktitle = {Proceedings of The 7nd International Conference on Medical Imaging with Deep Learning}, pages = {289--305}, year = {2024}, editor = {Burgos, Ninon and Petitjean, Caroline and Vakalopoulou, Maria and Christodoulidis, Stergios and Coupe, Pierrick and Delingette, Hervé and Lartizien, Carole and Mateus, Diana}, volume = {250}, series = {Proceedings of Machine Learning Research}, month = {03--05 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v250/main/assets/dahan24a/dahan24a.pdf}, url = {https://proceedings.mlr.press/v250/dahan24a.html}, abstract = {Surface meshes are a favoured domain for representing structural and functional information on the human cortex, but their complex topology and geometry pose significant challenges for deep learning analysis. While Transformers have excelled as domain-agnostic architectures for sequence-to-sequence learning, the quadratic cost of the self-attention operation remains an obstacle for many dense prediction tasks. Inspired by some of the latest advances in hierarchical modelling with vision transformers, we introduce the Multiscale Surface Vision Transformer (MS-SiT) as a backbone architecture for surface deep learning. The self-attention mechanism is applied within local-mesh-windows to allow for high-resolution sampling of the underlying data, while a shifted-window strategy improves the sharing of information between windows. Neighbouring patches are successively merged, allowing the MS-SiT to learn hierarchical representations suitable for any prediction task. Results demonstrate that the MS-SiT outperforms existing surface deep learning methods for neonatal phenotyping prediction tasks using the Developing Human Connectome Project (dHCP) dataset. Furthermore, building the MS-SiT backbone into a U-shaped architecture for surface segmentation demonstrates competitive results on cortical parcellation using the UK Biobank (UKB) and manually-annotated MindBoggle datasets. Code and trained models are publicly available at https://github.com/metrics-lab/surface-vision-transformers.} }
Endnote
%0 Conference Paper %T The Multiscale Surface Vision Transformer %A Simon Dahan %A Logan Zane John Williams %A Daniel Rueckert %A Emma Claire Robinson %B Proceedings of The 7nd International Conference on Medical Imaging with Deep Learning %C Proceedings of Machine Learning Research %D 2024 %E Ninon Burgos %E Caroline Petitjean %E Maria Vakalopoulou %E Stergios Christodoulidis %E Pierrick Coupe %E Hervé Delingette %E Carole Lartizien %E Diana Mateus %F pmlr-v250-dahan24a %I PMLR %P 289--305 %U https://proceedings.mlr.press/v250/dahan24a.html %V 250 %X Surface meshes are a favoured domain for representing structural and functional information on the human cortex, but their complex topology and geometry pose significant challenges for deep learning analysis. While Transformers have excelled as domain-agnostic architectures for sequence-to-sequence learning, the quadratic cost of the self-attention operation remains an obstacle for many dense prediction tasks. Inspired by some of the latest advances in hierarchical modelling with vision transformers, we introduce the Multiscale Surface Vision Transformer (MS-SiT) as a backbone architecture for surface deep learning. The self-attention mechanism is applied within local-mesh-windows to allow for high-resolution sampling of the underlying data, while a shifted-window strategy improves the sharing of information between windows. Neighbouring patches are successively merged, allowing the MS-SiT to learn hierarchical representations suitable for any prediction task. Results demonstrate that the MS-SiT outperforms existing surface deep learning methods for neonatal phenotyping prediction tasks using the Developing Human Connectome Project (dHCP) dataset. Furthermore, building the MS-SiT backbone into a U-shaped architecture for surface segmentation demonstrates competitive results on cortical parcellation using the UK Biobank (UKB) and manually-annotated MindBoggle datasets. Code and trained models are publicly available at https://github.com/metrics-lab/surface-vision-transformers.
APA
Dahan, S., Williams, L.Z.J., Rueckert, D. & Robinson, E.C.. (2024). The Multiscale Surface Vision Transformer. Proceedings of The 7nd International Conference on Medical Imaging with Deep Learning, in Proceedings of Machine Learning Research 250:289-305 Available from https://proceedings.mlr.press/v250/dahan24a.html.

Related Material