Spatio-Temporal Encoding of Brain Dynamics with Surface Masked Autoencoders

Simon Dahan, Logan Zane John Williams, Yourong Guo, Daniel Rueckert, Emma Claire Robinson
Proceedings of The 7nd International Conference on Medical Imaging with Deep Learning, PMLR 250:306-325, 2024.

Abstract

The development of robust and generalisable models for encoding the spatio-temporal dynamics of human brain activity is crucial for advancing neuroscientific discoveries. However, significant individual variation in the organisation of the human cerebral cortex makes it difficult to identify population-level trends in these signals. Recently, Surface Vision Transformers (SiTs) have emerged as a promising approach for modelling cortical signals, yet they face some limitations in low-data scenarios due to the lack of inductive biases in their architecture. To address these challenges, this paper proposes the surface Masked AutoEncoder (sMAE) and video surface Masked AutoEncoder (vsMAE) - for multivariate and spatio-temporal pre-training of cortical signals over regular icosahedral grids. These models are trained to reconstruct cortical feature maps from masked versions of the input by learning strong latent representations of cortical structure and function. Such representations translate into better modelling of individual phenotypes and enhanced performance in downstream tasks. The proposed approach was evaluated on cortical phenotype regression using data from the young adult Human Connectome Project (HCP) and developing HCP (dHCP). Results show that (v)sMAE pre-trained models improve phenotyping prediction performance on multiple tasks by $\ge 26%$, and offer faster convergence relative to models trained from scratch. Finally, we show that pre-training vision transformers on large datasets, such as the UK Biobank (UKB), supports transfer learning to low-data regimes. Our code and pre-trained models are publicly available at https://github.com/metrics-lab/surface-masked-autoencoders.

Cite this Paper


BibTeX
@InProceedings{pmlr-v250-dahan24b, title = {Spatio-Temporal Encoding of Brain Dynamics with Surface Masked Autoencoders}, author = {Dahan, Simon and Williams, Logan Zane John and Guo, Yourong and Rueckert, Daniel and Robinson, Emma Claire}, booktitle = {Proceedings of The 7nd International Conference on Medical Imaging with Deep Learning}, pages = {306--325}, year = {2024}, editor = {Burgos, Ninon and Petitjean, Caroline and Vakalopoulou, Maria and Christodoulidis, Stergios and Coupe, Pierrick and Delingette, Hervé and Lartizien, Carole and Mateus, Diana}, volume = {250}, series = {Proceedings of Machine Learning Research}, month = {03--05 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v250/main/assets/dahan24b/dahan24b.pdf}, url = {https://proceedings.mlr.press/v250/dahan24b.html}, abstract = {The development of robust and generalisable models for encoding the spatio-temporal dynamics of human brain activity is crucial for advancing neuroscientific discoveries. However, significant individual variation in the organisation of the human cerebral cortex makes it difficult to identify population-level trends in these signals. Recently, Surface Vision Transformers (SiTs) have emerged as a promising approach for modelling cortical signals, yet they face some limitations in low-data scenarios due to the lack of inductive biases in their architecture. To address these challenges, this paper proposes the surface Masked AutoEncoder (sMAE) and video surface Masked AutoEncoder (vsMAE) - for multivariate and spatio-temporal pre-training of cortical signals over regular icosahedral grids. These models are trained to reconstruct cortical feature maps from masked versions of the input by learning strong latent representations of cortical structure and function. Such representations translate into better modelling of individual phenotypes and enhanced performance in downstream tasks. The proposed approach was evaluated on cortical phenotype regression using data from the young adult Human Connectome Project (HCP) and developing HCP (dHCP). Results show that (v)sMAE pre-trained models improve phenotyping prediction performance on multiple tasks by $\ge 26%$, and offer faster convergence relative to models trained from scratch. Finally, we show that pre-training vision transformers on large datasets, such as the UK Biobank (UKB), supports transfer learning to low-data regimes. Our code and pre-trained models are publicly available at https://github.com/metrics-lab/surface-masked-autoencoders.} }
Endnote
%0 Conference Paper %T Spatio-Temporal Encoding of Brain Dynamics with Surface Masked Autoencoders %A Simon Dahan %A Logan Zane John Williams %A Yourong Guo %A Daniel Rueckert %A Emma Claire Robinson %B Proceedings of The 7nd International Conference on Medical Imaging with Deep Learning %C Proceedings of Machine Learning Research %D 2024 %E Ninon Burgos %E Caroline Petitjean %E Maria Vakalopoulou %E Stergios Christodoulidis %E Pierrick Coupe %E Hervé Delingette %E Carole Lartizien %E Diana Mateus %F pmlr-v250-dahan24b %I PMLR %P 306--325 %U https://proceedings.mlr.press/v250/dahan24b.html %V 250 %X The development of robust and generalisable models for encoding the spatio-temporal dynamics of human brain activity is crucial for advancing neuroscientific discoveries. However, significant individual variation in the organisation of the human cerebral cortex makes it difficult to identify population-level trends in these signals. Recently, Surface Vision Transformers (SiTs) have emerged as a promising approach for modelling cortical signals, yet they face some limitations in low-data scenarios due to the lack of inductive biases in their architecture. To address these challenges, this paper proposes the surface Masked AutoEncoder (sMAE) and video surface Masked AutoEncoder (vsMAE) - for multivariate and spatio-temporal pre-training of cortical signals over regular icosahedral grids. These models are trained to reconstruct cortical feature maps from masked versions of the input by learning strong latent representations of cortical structure and function. Such representations translate into better modelling of individual phenotypes and enhanced performance in downstream tasks. The proposed approach was evaluated on cortical phenotype regression using data from the young adult Human Connectome Project (HCP) and developing HCP (dHCP). Results show that (v)sMAE pre-trained models improve phenotyping prediction performance on multiple tasks by $\ge 26%$, and offer faster convergence relative to models trained from scratch. Finally, we show that pre-training vision transformers on large datasets, such as the UK Biobank (UKB), supports transfer learning to low-data regimes. Our code and pre-trained models are publicly available at https://github.com/metrics-lab/surface-masked-autoencoders.
APA
Dahan, S., Williams, L.Z.J., Guo, Y., Rueckert, D. & Robinson, E.C.. (2024). Spatio-Temporal Encoding of Brain Dynamics with Surface Masked Autoencoders. Proceedings of The 7nd International Conference on Medical Imaging with Deep Learning, in Proceedings of Machine Learning Research 250:306-325 Available from https://proceedings.mlr.press/v250/dahan24b.html.

Related Material