Parameter-Efficient Generation of Natural Language Explanations for Chest X-ray Classification

Isabel Rio-Torto, Jaime S Cardoso, Luis Filipe Teixeira
Proceedings of The 7nd International Conference on Medical Imaging with Deep Learning, PMLR 250:1267-1281, 2024.

Abstract

The increased interest and importance of explaining neural networks\’{predictions}, especially in the medical community, associated with the known unreliability of saliency maps, the most common explainability method, has sparked research into other types of explanations. Natural Language Explanations (NLEs) emerge as an alternative, with the advantage of being inherently understandable by humans and the standard way that radiologists explain their diagnoses. We extend upon previous work on NLE generation for multi-label chest X-ray diagnosis by replacing the traditional decoder-only NLE generator with an encoder-decoder architecture. This constitutes a first step towards Reinforcement Learning-free adversarial generation of NLEs when no (or few) ground-truth NLEs are available for training, since the generation is done in the continuous encoder latent space, instead of in the discrete decoder output space.However, in the current scenario, large amounts of annotated examples are still required, which are especially costly to obtain in the medical domain, given that they need to be provided by clinicians. Thus, we explore how the recent developments in Parameter-Efficient Fine-Tuning (PEFT) can be leveraged for this use-case. We compare different PEFT methods and find that integrating the visual information into the NLE generator layers instead of only at the input achieves the best results, even outperforming the fully fine-tuned encoder-decoder-based model, while only training 12% of the model parameters. Additionally, we empirically demonstrate the viability of supervising the NLE generation process on the encoder latent space, thus laying the foundation for RL-free adversarial training in low ground-truth NLE availability regimes. The code is publicly available at https://github.com/to_be_added.

Cite this Paper


BibTeX
@InProceedings{pmlr-v250-rio-torto24a, title = {Parameter-Efficient Generation of Natural Language Explanations for Chest X-ray Classification}, author = {Rio-Torto, Isabel and Cardoso, Jaime S and Teixeira, Luis Filipe}, booktitle = {Proceedings of The 7nd International Conference on Medical Imaging with Deep Learning}, pages = {1267--1281}, year = {2024}, editor = {Burgos, Ninon and Petitjean, Caroline and Vakalopoulou, Maria and Christodoulidis, Stergios and Coupe, Pierrick and Delingette, Hervé and Lartizien, Carole and Mateus, Diana}, volume = {250}, series = {Proceedings of Machine Learning Research}, month = {03--05 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v250/main/assets/rio-torto24a/rio-torto24a.pdf}, url = {https://proceedings.mlr.press/v250/rio-torto24a.html}, abstract = {The increased interest and importance of explaining neural networks\’{predictions}, especially in the medical community, associated with the known unreliability of saliency maps, the most common explainability method, has sparked research into other types of explanations. Natural Language Explanations (NLEs) emerge as an alternative, with the advantage of being inherently understandable by humans and the standard way that radiologists explain their diagnoses. We extend upon previous work on NLE generation for multi-label chest X-ray diagnosis by replacing the traditional decoder-only NLE generator with an encoder-decoder architecture. This constitutes a first step towards Reinforcement Learning-free adversarial generation of NLEs when no (or few) ground-truth NLEs are available for training, since the generation is done in the continuous encoder latent space, instead of in the discrete decoder output space.However, in the current scenario, large amounts of annotated examples are still required, which are especially costly to obtain in the medical domain, given that they need to be provided by clinicians. Thus, we explore how the recent developments in Parameter-Efficient Fine-Tuning (PEFT) can be leveraged for this use-case. We compare different PEFT methods and find that integrating the visual information into the NLE generator layers instead of only at the input achieves the best results, even outperforming the fully fine-tuned encoder-decoder-based model, while only training 12% of the model parameters. Additionally, we empirically demonstrate the viability of supervising the NLE generation process on the encoder latent space, thus laying the foundation for RL-free adversarial training in low ground-truth NLE availability regimes. The code is publicly available at https://github.com/to_be_added.} }
Endnote
%0 Conference Paper %T Parameter-Efficient Generation of Natural Language Explanations for Chest X-ray Classification %A Isabel Rio-Torto %A Jaime S Cardoso %A Luis Filipe Teixeira %B Proceedings of The 7nd International Conference on Medical Imaging with Deep Learning %C Proceedings of Machine Learning Research %D 2024 %E Ninon Burgos %E Caroline Petitjean %E Maria Vakalopoulou %E Stergios Christodoulidis %E Pierrick Coupe %E Hervé Delingette %E Carole Lartizien %E Diana Mateus %F pmlr-v250-rio-torto24a %I PMLR %P 1267--1281 %U https://proceedings.mlr.press/v250/rio-torto24a.html %V 250 %X The increased interest and importance of explaining neural networks\’{predictions}, especially in the medical community, associated with the known unreliability of saliency maps, the most common explainability method, has sparked research into other types of explanations. Natural Language Explanations (NLEs) emerge as an alternative, with the advantage of being inherently understandable by humans and the standard way that radiologists explain their diagnoses. We extend upon previous work on NLE generation for multi-label chest X-ray diagnosis by replacing the traditional decoder-only NLE generator with an encoder-decoder architecture. This constitutes a first step towards Reinforcement Learning-free adversarial generation of NLEs when no (or few) ground-truth NLEs are available for training, since the generation is done in the continuous encoder latent space, instead of in the discrete decoder output space.However, in the current scenario, large amounts of annotated examples are still required, which are especially costly to obtain in the medical domain, given that they need to be provided by clinicians. Thus, we explore how the recent developments in Parameter-Efficient Fine-Tuning (PEFT) can be leveraged for this use-case. We compare different PEFT methods and find that integrating the visual information into the NLE generator layers instead of only at the input achieves the best results, even outperforming the fully fine-tuned encoder-decoder-based model, while only training 12% of the model parameters. Additionally, we empirically demonstrate the viability of supervising the NLE generation process on the encoder latent space, thus laying the foundation for RL-free adversarial training in low ground-truth NLE availability regimes. The code is publicly available at https://github.com/to_be_added.
APA
Rio-Torto, I., Cardoso, J.S. & Teixeira, L.F.. (2024). Parameter-Efficient Generation of Natural Language Explanations for Chest X-ray Classification. Proceedings of The 7nd International Conference on Medical Imaging with Deep Learning, in Proceedings of Machine Learning Research 250:1267-1281 Available from https://proceedings.mlr.press/v250/rio-torto24a.html.

Related Material