Trustworthy assessment of heterogeneous treatment effect estimator via analysis of relative error

Zijun Gao
Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, PMLR 258:1063-1071, 2025.

Abstract

Accurate heterogeneous treatment effect (HTE) estimation is essential for personalized recommendations, making it important to evaluate and compare HTE estimators. Traditional assessment methods are inapplicable due to missing counterfactuals. Current HTE evaluation methods rely on additional estimation or matching on test data, often ignoring the uncertainty introduced and potentially leading to incorrect conclusions. We propose incorporating uncertainty quantification into HTE estimator comparisons. In addition, we suggest shifting the focus to the estimation and inference of the relative error between methods rather than their absolute errors. Methodology-wise, we develop a relative error estimator based on the efficient influence function and establish its asymptotic distribution for inference. Compared to absolute error-based methods, the relative error estimator (1) is less sensitive to the error of nuisance function estimators, satisfying a "global double robustness" property, and (2) its confidence intervals are often narrower, making it more powerful for determining the more accurate HTE estimator. Through extensive empirical study of the ACIC challenge benchmark datasets, we show that the relative error-based method more effectively identifies the better HTE estimator with statistical confidence, even with a moderately large test dataset or inaccurate nuisance estimators.

Cite this Paper


BibTeX
@InProceedings{pmlr-v258-gao25d, title = {Trustworthy assessment of heterogeneous treatment effect estimator via analysis of relative error}, author = {Gao, Zijun}, booktitle = {Proceedings of The 28th International Conference on Artificial Intelligence and Statistics}, pages = {1063--1071}, year = {2025}, editor = {Li, Yingzhen and Mandt, Stephan and Agrawal, Shipra and Khan, Emtiyaz}, volume = {258}, series = {Proceedings of Machine Learning Research}, month = {03--05 May}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v258/main/assets/gao25d/gao25d.pdf}, url = {https://proceedings.mlr.press/v258/gao25d.html}, abstract = {Accurate heterogeneous treatment effect (HTE) estimation is essential for personalized recommendations, making it important to evaluate and compare HTE estimators. Traditional assessment methods are inapplicable due to missing counterfactuals. Current HTE evaluation methods rely on additional estimation or matching on test data, often ignoring the uncertainty introduced and potentially leading to incorrect conclusions. We propose incorporating uncertainty quantification into HTE estimator comparisons. In addition, we suggest shifting the focus to the estimation and inference of the relative error between methods rather than their absolute errors. Methodology-wise, we develop a relative error estimator based on the efficient influence function and establish its asymptotic distribution for inference. Compared to absolute error-based methods, the relative error estimator (1) is less sensitive to the error of nuisance function estimators, satisfying a "global double robustness" property, and (2) its confidence intervals are often narrower, making it more powerful for determining the more accurate HTE estimator. Through extensive empirical study of the ACIC challenge benchmark datasets, we show that the relative error-based method more effectively identifies the better HTE estimator with statistical confidence, even with a moderately large test dataset or inaccurate nuisance estimators.} }
Endnote
%0 Conference Paper %T Trustworthy assessment of heterogeneous treatment effect estimator via analysis of relative error %A Zijun Gao %B Proceedings of The 28th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2025 %E Yingzhen Li %E Stephan Mandt %E Shipra Agrawal %E Emtiyaz Khan %F pmlr-v258-gao25d %I PMLR %P 1063--1071 %U https://proceedings.mlr.press/v258/gao25d.html %V 258 %X Accurate heterogeneous treatment effect (HTE) estimation is essential for personalized recommendations, making it important to evaluate and compare HTE estimators. Traditional assessment methods are inapplicable due to missing counterfactuals. Current HTE evaluation methods rely on additional estimation or matching on test data, often ignoring the uncertainty introduced and potentially leading to incorrect conclusions. We propose incorporating uncertainty quantification into HTE estimator comparisons. In addition, we suggest shifting the focus to the estimation and inference of the relative error between methods rather than their absolute errors. Methodology-wise, we develop a relative error estimator based on the efficient influence function and establish its asymptotic distribution for inference. Compared to absolute error-based methods, the relative error estimator (1) is less sensitive to the error of nuisance function estimators, satisfying a "global double robustness" property, and (2) its confidence intervals are often narrower, making it more powerful for determining the more accurate HTE estimator. Through extensive empirical study of the ACIC challenge benchmark datasets, we show that the relative error-based method more effectively identifies the better HTE estimator with statistical confidence, even with a moderately large test dataset or inaccurate nuisance estimators.
APA
Gao, Z.. (2025). Trustworthy assessment of heterogeneous treatment effect estimator via analysis of relative error. Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 258:1063-1071 Available from https://proceedings.mlr.press/v258/gao25d.html.

Related Material