Primal-Dual Spectral Representation for Off-policy Evaluation

Yang Hu, Tianyi Chen, Na Li, Kai Wang, Bo Dai
Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, PMLR 258:3808-3816, 2025.

Abstract

Off-policy evaluation (OPE) is one of the most fundamental problems in reinforcement learning (RL) to estimate the expected long-term payoff of a given target policy with \emph{only} experiences from another behavior policy that is potentially unknown. The distribution correction estimation (DICE) family of estimators have advanced the state of the art in OPE by breaking the \emph{curse of horizon}. However, the major bottleneck of applying DICE estimators lies in the difficulty of solving the saddle-point optimization involved, especially with neural network implementations. In this paper, we tackle this challenge by establishing a \emph{linear representation} of value function and stationary distribution correction ratio, \emph{i.e.}, primal and dual variables in the DICE framework, using the spectral decomposition of the transition operator. Such primal-dual representation not only bypasses the non-convex non-concave optimization in vanilla DICE, therefore enabling an computational efficient algorithm, but also paves the way for more efficient utilization of historical data. We highlight that our algorithm, \textbf{SpectralDICE}, is the first to leverage the linear representation of primal-dual variables that is both computation and sample efficient, the performance of which is supported by a rigorous theoretical sample complexity guarantee and a thorough empirical evaluation on various benchmarks.

Cite this Paper


BibTeX
@InProceedings{pmlr-v258-hu25b, title = {Primal-Dual Spectral Representation for Off-policy Evaluation}, author = {Hu, Yang and Chen, Tianyi and Li, Na and Wang, Kai and Dai, Bo}, booktitle = {Proceedings of The 28th International Conference on Artificial Intelligence and Statistics}, pages = {3808--3816}, year = {2025}, editor = {Li, Yingzhen and Mandt, Stephan and Agrawal, Shipra and Khan, Emtiyaz}, volume = {258}, series = {Proceedings of Machine Learning Research}, month = {03--05 May}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v258/main/assets/hu25b/hu25b.pdf}, url = {https://proceedings.mlr.press/v258/hu25b.html}, abstract = {Off-policy evaluation (OPE) is one of the most fundamental problems in reinforcement learning (RL) to estimate the expected long-term payoff of a given target policy with \emph{only} experiences from another behavior policy that is potentially unknown. The distribution correction estimation (DICE) family of estimators have advanced the state of the art in OPE by breaking the \emph{curse of horizon}. However, the major bottleneck of applying DICE estimators lies in the difficulty of solving the saddle-point optimization involved, especially with neural network implementations. In this paper, we tackle this challenge by establishing a \emph{linear representation} of value function and stationary distribution correction ratio, \emph{i.e.}, primal and dual variables in the DICE framework, using the spectral decomposition of the transition operator. Such primal-dual representation not only bypasses the non-convex non-concave optimization in vanilla DICE, therefore enabling an computational efficient algorithm, but also paves the way for more efficient utilization of historical data. We highlight that our algorithm, \textbf{SpectralDICE}, is the first to leverage the linear representation of primal-dual variables that is both computation and sample efficient, the performance of which is supported by a rigorous theoretical sample complexity guarantee and a thorough empirical evaluation on various benchmarks.} }
Endnote
%0 Conference Paper %T Primal-Dual Spectral Representation for Off-policy Evaluation %A Yang Hu %A Tianyi Chen %A Na Li %A Kai Wang %A Bo Dai %B Proceedings of The 28th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2025 %E Yingzhen Li %E Stephan Mandt %E Shipra Agrawal %E Emtiyaz Khan %F pmlr-v258-hu25b %I PMLR %P 3808--3816 %U https://proceedings.mlr.press/v258/hu25b.html %V 258 %X Off-policy evaluation (OPE) is one of the most fundamental problems in reinforcement learning (RL) to estimate the expected long-term payoff of a given target policy with \emph{only} experiences from another behavior policy that is potentially unknown. The distribution correction estimation (DICE) family of estimators have advanced the state of the art in OPE by breaking the \emph{curse of horizon}. However, the major bottleneck of applying DICE estimators lies in the difficulty of solving the saddle-point optimization involved, especially with neural network implementations. In this paper, we tackle this challenge by establishing a \emph{linear representation} of value function and stationary distribution correction ratio, \emph{i.e.}, primal and dual variables in the DICE framework, using the spectral decomposition of the transition operator. Such primal-dual representation not only bypasses the non-convex non-concave optimization in vanilla DICE, therefore enabling an computational efficient algorithm, but also paves the way for more efficient utilization of historical data. We highlight that our algorithm, \textbf{SpectralDICE}, is the first to leverage the linear representation of primal-dual variables that is both computation and sample efficient, the performance of which is supported by a rigorous theoretical sample complexity guarantee and a thorough empirical evaluation on various benchmarks.
APA
Hu, Y., Chen, T., Li, N., Wang, K. & Dai, B.. (2025). Primal-Dual Spectral Representation for Off-policy Evaluation. Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 258:3808-3816 Available from https://proceedings.mlr.press/v258/hu25b.html.

Related Material