The Uniformly Rotated Mondrian Kernel

Calvin Osborne, Eliza O’Reilly
Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, PMLR 258:4663-4671, 2025.

Abstract

Random feature maps are used to decrease the computational cost of kernel machines in large-scale problems. The Mondrian kernel is one such example of a fast random feature approximation of the Laplace kernel, generated by a computationally efficient hierarchical random partition of the input space known as the Mondrian process. In this work, we study a variation of this random feature map by applying a uniform random rotation to the input space before running the Mondrian process to approximate a kernel that is invariant under rotations. We obtain a closed-form expression for the isotropic kernel that is approximated, as well as a uniform convergence rate of the uniformly rotated Mondrian kernel to this limit. To this end, we utilize techniques from the theory of stationary random tessellations in stochastic geometry and prove a new result on the geometry of the typical cell of the superposition of uniformly rotated Mondrian tessellations. Finally, we test the empirical performance of this random feature map on both synthetic and real-world datasets, demonstrating its improved performance over the Mondrian kernel on a dataset that is debiased from the standard coordinate axes.

Cite this Paper


BibTeX
@InProceedings{pmlr-v258-osborne25a, title = {The Uniformly Rotated Mondrian Kernel}, author = {Osborne, Calvin and O'Reilly, Eliza}, booktitle = {Proceedings of The 28th International Conference on Artificial Intelligence and Statistics}, pages = {4663--4671}, year = {2025}, editor = {Li, Yingzhen and Mandt, Stephan and Agrawal, Shipra and Khan, Emtiyaz}, volume = {258}, series = {Proceedings of Machine Learning Research}, month = {03--05 May}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v258/main/assets/osborne25a/osborne25a.pdf}, url = {https://proceedings.mlr.press/v258/osborne25a.html}, abstract = {Random feature maps are used to decrease the computational cost of kernel machines in large-scale problems. The Mondrian kernel is one such example of a fast random feature approximation of the Laplace kernel, generated by a computationally efficient hierarchical random partition of the input space known as the Mondrian process. In this work, we study a variation of this random feature map by applying a uniform random rotation to the input space before running the Mondrian process to approximate a kernel that is invariant under rotations. We obtain a closed-form expression for the isotropic kernel that is approximated, as well as a uniform convergence rate of the uniformly rotated Mondrian kernel to this limit. To this end, we utilize techniques from the theory of stationary random tessellations in stochastic geometry and prove a new result on the geometry of the typical cell of the superposition of uniformly rotated Mondrian tessellations. Finally, we test the empirical performance of this random feature map on both synthetic and real-world datasets, demonstrating its improved performance over the Mondrian kernel on a dataset that is debiased from the standard coordinate axes.} }
Endnote
%0 Conference Paper %T The Uniformly Rotated Mondrian Kernel %A Calvin Osborne %A Eliza O’Reilly %B Proceedings of The 28th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2025 %E Yingzhen Li %E Stephan Mandt %E Shipra Agrawal %E Emtiyaz Khan %F pmlr-v258-osborne25a %I PMLR %P 4663--4671 %U https://proceedings.mlr.press/v258/osborne25a.html %V 258 %X Random feature maps are used to decrease the computational cost of kernel machines in large-scale problems. The Mondrian kernel is one such example of a fast random feature approximation of the Laplace kernel, generated by a computationally efficient hierarchical random partition of the input space known as the Mondrian process. In this work, we study a variation of this random feature map by applying a uniform random rotation to the input space before running the Mondrian process to approximate a kernel that is invariant under rotations. We obtain a closed-form expression for the isotropic kernel that is approximated, as well as a uniform convergence rate of the uniformly rotated Mondrian kernel to this limit. To this end, we utilize techniques from the theory of stationary random tessellations in stochastic geometry and prove a new result on the geometry of the typical cell of the superposition of uniformly rotated Mondrian tessellations. Finally, we test the empirical performance of this random feature map on both synthetic and real-world datasets, demonstrating its improved performance over the Mondrian kernel on a dataset that is debiased from the standard coordinate axes.
APA
Osborne, C. & O’Reilly, E.. (2025). The Uniformly Rotated Mondrian Kernel. Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 258:4663-4671 Available from https://proceedings.mlr.press/v258/osborne25a.html.

Related Material