Semiparametric conformal prediction

Ji Won Park, Kyunghyun Cho
Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, PMLR 258:3880-3888, 2025.

Abstract

Many risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables, for which the prediction algorithm may report correlated errors. In this work, we aim to construct the conformal prediction set accounting for the joint correlation structure of the vector-valued non-conformity scores. Drawing from the rich literature on multivariate quantiles and semiparametric statistics, we propose an algorithm to estimate the $1-\alpha$ quantile of the scores, where $\alpha$ is the user-specified miscoverage rate. In particular, we flexibly estimate the joint cumulative distribution function (CDF) of the scores using nonparametric vine copulas and improve the asymptotic efficiency of the quantile estimate using its influence function. The vine decomposition allows our method to scale well to a large number of targets. As well as guaranteeing asymptotically exact coverage, our method yields desired coverage and competitive efficiency on a range of real-world regression problems, including those with missing-at-random labels in the calibration set.

Cite this Paper


BibTeX
@InProceedings{pmlr-v258-park25c, title = {Semiparametric conformal prediction}, author = {Park, Ji Won and Cho, Kyunghyun}, booktitle = {Proceedings of The 28th International Conference on Artificial Intelligence and Statistics}, pages = {3880--3888}, year = {2025}, editor = {Li, Yingzhen and Mandt, Stephan and Agrawal, Shipra and Khan, Emtiyaz}, volume = {258}, series = {Proceedings of Machine Learning Research}, month = {03--05 May}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v258/main/assets/park25c/park25c.pdf}, url = {https://proceedings.mlr.press/v258/park25c.html}, abstract = {Many risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables, for which the prediction algorithm may report correlated errors. In this work, we aim to construct the conformal prediction set accounting for the joint correlation structure of the vector-valued non-conformity scores. Drawing from the rich literature on multivariate quantiles and semiparametric statistics, we propose an algorithm to estimate the $1-\alpha$ quantile of the scores, where $\alpha$ is the user-specified miscoverage rate. In particular, we flexibly estimate the joint cumulative distribution function (CDF) of the scores using nonparametric vine copulas and improve the asymptotic efficiency of the quantile estimate using its influence function. The vine decomposition allows our method to scale well to a large number of targets. As well as guaranteeing asymptotically exact coverage, our method yields desired coverage and competitive efficiency on a range of real-world regression problems, including those with missing-at-random labels in the calibration set.} }
Endnote
%0 Conference Paper %T Semiparametric conformal prediction %A Ji Won Park %A Kyunghyun Cho %B Proceedings of The 28th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2025 %E Yingzhen Li %E Stephan Mandt %E Shipra Agrawal %E Emtiyaz Khan %F pmlr-v258-park25c %I PMLR %P 3880--3888 %U https://proceedings.mlr.press/v258/park25c.html %V 258 %X Many risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables, for which the prediction algorithm may report correlated errors. In this work, we aim to construct the conformal prediction set accounting for the joint correlation structure of the vector-valued non-conformity scores. Drawing from the rich literature on multivariate quantiles and semiparametric statistics, we propose an algorithm to estimate the $1-\alpha$ quantile of the scores, where $\alpha$ is the user-specified miscoverage rate. In particular, we flexibly estimate the joint cumulative distribution function (CDF) of the scores using nonparametric vine copulas and improve the asymptotic efficiency of the quantile estimate using its influence function. The vine decomposition allows our method to scale well to a large number of targets. As well as guaranteeing asymptotically exact coverage, our method yields desired coverage and competitive efficiency on a range of real-world regression problems, including those with missing-at-random labels in the calibration set.
APA
Park, J.W. & Cho, K.. (2025). Semiparametric conformal prediction. Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 258:3880-3888 Available from https://proceedings.mlr.press/v258/park25c.html.

Related Material