S-CFE: Simple Counterfactual Explanations

Shpresim Sadiku, Moritz Wagner, Sai Ganesh Nagarajan, Sebastian Pokutta
Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, PMLR 258:172-180, 2025.

Abstract

We study the problem of finding optimal sparse, manifold-aligned counterfactual explanations for classifiers. Canonically, this can be formulated as an optimization problem with multiple non-convex components, including classifier loss functions and manifold alignment (or \emph{plausibility}) metrics. The added complexity of enforcing \emph{sparsity}, or shorter explanations, complicates the problem further. Existing methods often focus on specific models and plausibility measures, relying on convex $\ell_1$ regularizers to enforce sparsity. In this paper, we tackle the canonical formulation using the accelerated proximal gradient (APG) method, a simple yet efficient first-order procedure capable of handling smooth non-convex objectives and non-smooth $\ell_p$ (where $0 \leq p < 1$) regularizers. This enables our approach to seamlessly incorporate various classifiers and plausibility measures while producing sparser solutions. Our algorithm only requires differentiable data-manifold regularizers and supports box constraints for bounded feature ranges, ensuring the generated counterfactuals remain \emph{actionable}. Finally, experiments on real-world datasets demonstrate that our approach effectively produces sparse, manifold-aligned counterfactual explanations while maintaining proximity to the factual data and computational efficiency.

Cite this Paper


BibTeX
@InProceedings{pmlr-v258-sadiku25a, title = {S-CFE: Simple Counterfactual Explanations}, author = {Sadiku, Shpresim and Wagner, Moritz and Nagarajan, Sai Ganesh and Pokutta, Sebastian}, booktitle = {Proceedings of The 28th International Conference on Artificial Intelligence and Statistics}, pages = {172--180}, year = {2025}, editor = {Li, Yingzhen and Mandt, Stephan and Agrawal, Shipra and Khan, Emtiyaz}, volume = {258}, series = {Proceedings of Machine Learning Research}, month = {03--05 May}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v258/main/assets/sadiku25a/sadiku25a.pdf}, url = {https://proceedings.mlr.press/v258/sadiku25a.html}, abstract = {We study the problem of finding optimal sparse, manifold-aligned counterfactual explanations for classifiers. Canonically, this can be formulated as an optimization problem with multiple non-convex components, including classifier loss functions and manifold alignment (or \emph{plausibility}) metrics. The added complexity of enforcing \emph{sparsity}, or shorter explanations, complicates the problem further. Existing methods often focus on specific models and plausibility measures, relying on convex $\ell_1$ regularizers to enforce sparsity. In this paper, we tackle the canonical formulation using the accelerated proximal gradient (APG) method, a simple yet efficient first-order procedure capable of handling smooth non-convex objectives and non-smooth $\ell_p$ (where $0 \leq p < 1$) regularizers. This enables our approach to seamlessly incorporate various classifiers and plausibility measures while producing sparser solutions. Our algorithm only requires differentiable data-manifold regularizers and supports box constraints for bounded feature ranges, ensuring the generated counterfactuals remain \emph{actionable}. Finally, experiments on real-world datasets demonstrate that our approach effectively produces sparse, manifold-aligned counterfactual explanations while maintaining proximity to the factual data and computational efficiency.} }
Endnote
%0 Conference Paper %T S-CFE: Simple Counterfactual Explanations %A Shpresim Sadiku %A Moritz Wagner %A Sai Ganesh Nagarajan %A Sebastian Pokutta %B Proceedings of The 28th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2025 %E Yingzhen Li %E Stephan Mandt %E Shipra Agrawal %E Emtiyaz Khan %F pmlr-v258-sadiku25a %I PMLR %P 172--180 %U https://proceedings.mlr.press/v258/sadiku25a.html %V 258 %X We study the problem of finding optimal sparse, manifold-aligned counterfactual explanations for classifiers. Canonically, this can be formulated as an optimization problem with multiple non-convex components, including classifier loss functions and manifold alignment (or \emph{plausibility}) metrics. The added complexity of enforcing \emph{sparsity}, or shorter explanations, complicates the problem further. Existing methods often focus on specific models and plausibility measures, relying on convex $\ell_1$ regularizers to enforce sparsity. In this paper, we tackle the canonical formulation using the accelerated proximal gradient (APG) method, a simple yet efficient first-order procedure capable of handling smooth non-convex objectives and non-smooth $\ell_p$ (where $0 \leq p < 1$) regularizers. This enables our approach to seamlessly incorporate various classifiers and plausibility measures while producing sparser solutions. Our algorithm only requires differentiable data-manifold regularizers and supports box constraints for bounded feature ranges, ensuring the generated counterfactuals remain \emph{actionable}. Finally, experiments on real-world datasets demonstrate that our approach effectively produces sparse, manifold-aligned counterfactual explanations while maintaining proximity to the factual data and computational efficiency.
APA
Sadiku, S., Wagner, M., Nagarajan, S.G. & Pokutta, S.. (2025). S-CFE: Simple Counterfactual Explanations. Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 258:172-180 Available from https://proceedings.mlr.press/v258/sadiku25a.html.

Related Material