Mixed-Feature Logistic Regression Robust to Distribution Shifts

Qingshi Sun, Nathan Justin, Andres Gomez, Phebe Vayanos
Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, PMLR 258:4906-4914, 2025.

Abstract

Logistic regression models are widely used in the social and behavioral sciences and in high-stakes domains, due to their simplicity and interpretability properties. At the same time, such domains are permeated by distribution shifts, where the distribution generating the data changes between training and deployment. In this paper, we study a distributionally robust logistic regression problem that seeks the model that will perform best against adversarial realizations of the data distribution drawn from a suitably constructed Wasserstein ambiguity set. Our model and solution approach differ from prior work in that we can capture settings where the likelihood of distribution shifts can vary across features, significantly broadening the applicability of our model relative to the state-of-the-art. We propose a graph-based solution approach that can be integrated into off-the-shelf optimization solvers. We evaluate the performance of our model and algorithms on numerous publicly available datasets. Our solution achieves a 408x speed-up relative to the state-of-the-art. Additionally, compared to the state-of-the-art, our model reduces average calibration error by up to 36.19% and worst-case calibration error by up to 41.70%, while increasing the average area under the ROC curve (AUC) by up to 18.02% and worst-case AUC by up to 48.37%.

Cite this Paper


BibTeX
@InProceedings{pmlr-v258-sun25e, title = {Mixed-Feature Logistic Regression Robust to Distribution Shifts}, author = {Sun, Qingshi and Justin, Nathan and Gomez, Andres and Vayanos, Phebe}, booktitle = {Proceedings of The 28th International Conference on Artificial Intelligence and Statistics}, pages = {4906--4914}, year = {2025}, editor = {Li, Yingzhen and Mandt, Stephan and Agrawal, Shipra and Khan, Emtiyaz}, volume = {258}, series = {Proceedings of Machine Learning Research}, month = {03--05 May}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v258/main/assets/sun25e/sun25e.pdf}, url = {https://proceedings.mlr.press/v258/sun25e.html}, abstract = {Logistic regression models are widely used in the social and behavioral sciences and in high-stakes domains, due to their simplicity and interpretability properties. At the same time, such domains are permeated by distribution shifts, where the distribution generating the data changes between training and deployment. In this paper, we study a distributionally robust logistic regression problem that seeks the model that will perform best against adversarial realizations of the data distribution drawn from a suitably constructed Wasserstein ambiguity set. Our model and solution approach differ from prior work in that we can capture settings where the likelihood of distribution shifts can vary across features, significantly broadening the applicability of our model relative to the state-of-the-art. We propose a graph-based solution approach that can be integrated into off-the-shelf optimization solvers. We evaluate the performance of our model and algorithms on numerous publicly available datasets. Our solution achieves a 408x speed-up relative to the state-of-the-art. Additionally, compared to the state-of-the-art, our model reduces average calibration error by up to 36.19% and worst-case calibration error by up to 41.70%, while increasing the average area under the ROC curve (AUC) by up to 18.02% and worst-case AUC by up to 48.37%.} }
Endnote
%0 Conference Paper %T Mixed-Feature Logistic Regression Robust to Distribution Shifts %A Qingshi Sun %A Nathan Justin %A Andres Gomez %A Phebe Vayanos %B Proceedings of The 28th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2025 %E Yingzhen Li %E Stephan Mandt %E Shipra Agrawal %E Emtiyaz Khan %F pmlr-v258-sun25e %I PMLR %P 4906--4914 %U https://proceedings.mlr.press/v258/sun25e.html %V 258 %X Logistic regression models are widely used in the social and behavioral sciences and in high-stakes domains, due to their simplicity and interpretability properties. At the same time, such domains are permeated by distribution shifts, where the distribution generating the data changes between training and deployment. In this paper, we study a distributionally robust logistic regression problem that seeks the model that will perform best against adversarial realizations of the data distribution drawn from a suitably constructed Wasserstein ambiguity set. Our model and solution approach differ from prior work in that we can capture settings where the likelihood of distribution shifts can vary across features, significantly broadening the applicability of our model relative to the state-of-the-art. We propose a graph-based solution approach that can be integrated into off-the-shelf optimization solvers. We evaluate the performance of our model and algorithms on numerous publicly available datasets. Our solution achieves a 408x speed-up relative to the state-of-the-art. Additionally, compared to the state-of-the-art, our model reduces average calibration error by up to 36.19% and worst-case calibration error by up to 41.70%, while increasing the average area under the ROC curve (AUC) by up to 18.02% and worst-case AUC by up to 48.37%.
APA
Sun, Q., Justin, N., Gomez, A. & Vayanos, P.. (2025). Mixed-Feature Logistic Regression Robust to Distribution Shifts. Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 258:4906-4914 Available from https://proceedings.mlr.press/v258/sun25e.html.

Related Material