Narrowing the Gap between Adversarial and Stochastic MDPs via Policy Optimization

Daniil Tiapkin, Evgenii Chzhen, Gilles Stoltz
Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, PMLR 258:3331-3339, 2025.

Abstract

We consider the problem of learning in adversarial Markov decision processes [MDPs] with an oblivious adversary in a full-information setting. The agent interacts with an environment during $T$ episodes, each of which consists of $H$ stages, and each episode is evaluated with respect to a reward function that will be revealed only at the end of the episode. We propose an algorithm, called APO-MVP, that achieves a regret bound of order $\tilde{\mathcal{O}}(\mathrm{poly}(H)\sqrt{SAT})$, where $S$ and $A$ are sizes of the state and action spaces, respectively. This result improves upon the best-known regret bound by a factor of $\sqrt{S}$, bridging the gap between adversarial and stochastic MDPs, and matching the minimax lower bound $\Omega(\sqrt{H^3SAT})$ as far as the dependencies in $S,A,T$ are concerned. The proposed algorithm and analysis completely avoid the typical tool given by occupancy measures; instead, it performs policy optimization based only on dynamic programming and on a black-box online linear optimization strategy run over estimated advantage functions, making it easy to implement. The analysis leverages two recent techniques: policy optimization based on online linear optimization strategies (Jonckheere et al., 2023) and a refined martingale analysis of the impact on values of estimating transitions kernels (Zhang et al., 2023).

Cite this Paper


BibTeX
@InProceedings{pmlr-v258-tiapkin25a, title = {Narrowing the Gap between Adversarial and Stochastic MDPs via Policy Optimization}, author = {Tiapkin, Daniil and Chzhen, Evgenii and Stoltz, Gilles}, booktitle = {Proceedings of The 28th International Conference on Artificial Intelligence and Statistics}, pages = {3331--3339}, year = {2025}, editor = {Li, Yingzhen and Mandt, Stephan and Agrawal, Shipra and Khan, Emtiyaz}, volume = {258}, series = {Proceedings of Machine Learning Research}, month = {03--05 May}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v258/main/assets/tiapkin25a/tiapkin25a.pdf}, url = {https://proceedings.mlr.press/v258/tiapkin25a.html}, abstract = {We consider the problem of learning in adversarial Markov decision processes [MDPs] with an oblivious adversary in a full-information setting. The agent interacts with an environment during $T$ episodes, each of which consists of $H$ stages, and each episode is evaluated with respect to a reward function that will be revealed only at the end of the episode. We propose an algorithm, called APO-MVP, that achieves a regret bound of order $\tilde{\mathcal{O}}(\mathrm{poly}(H)\sqrt{SAT})$, where $S$ and $A$ are sizes of the state and action spaces, respectively. This result improves upon the best-known regret bound by a factor of $\sqrt{S}$, bridging the gap between adversarial and stochastic MDPs, and matching the minimax lower bound $\Omega(\sqrt{H^3SAT})$ as far as the dependencies in $S,A,T$ are concerned. The proposed algorithm and analysis completely avoid the typical tool given by occupancy measures; instead, it performs policy optimization based only on dynamic programming and on a black-box online linear optimization strategy run over estimated advantage functions, making it easy to implement. The analysis leverages two recent techniques: policy optimization based on online linear optimization strategies (Jonckheere et al., 2023) and a refined martingale analysis of the impact on values of estimating transitions kernels (Zhang et al., 2023).} }
Endnote
%0 Conference Paper %T Narrowing the Gap between Adversarial and Stochastic MDPs via Policy Optimization %A Daniil Tiapkin %A Evgenii Chzhen %A Gilles Stoltz %B Proceedings of The 28th International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2025 %E Yingzhen Li %E Stephan Mandt %E Shipra Agrawal %E Emtiyaz Khan %F pmlr-v258-tiapkin25a %I PMLR %P 3331--3339 %U https://proceedings.mlr.press/v258/tiapkin25a.html %V 258 %X We consider the problem of learning in adversarial Markov decision processes [MDPs] with an oblivious adversary in a full-information setting. The agent interacts with an environment during $T$ episodes, each of which consists of $H$ stages, and each episode is evaluated with respect to a reward function that will be revealed only at the end of the episode. We propose an algorithm, called APO-MVP, that achieves a regret bound of order $\tilde{\mathcal{O}}(\mathrm{poly}(H)\sqrt{SAT})$, where $S$ and $A$ are sizes of the state and action spaces, respectively. This result improves upon the best-known regret bound by a factor of $\sqrt{S}$, bridging the gap between adversarial and stochastic MDPs, and matching the minimax lower bound $\Omega(\sqrt{H^3SAT})$ as far as the dependencies in $S,A,T$ are concerned. The proposed algorithm and analysis completely avoid the typical tool given by occupancy measures; instead, it performs policy optimization based only on dynamic programming and on a black-box online linear optimization strategy run over estimated advantage functions, making it easy to implement. The analysis leverages two recent techniques: policy optimization based on online linear optimization strategies (Jonckheere et al., 2023) and a refined martingale analysis of the impact on values of estimating transitions kernels (Zhang et al., 2023).
APA
Tiapkin, D., Chzhen, E. & Stoltz, G.. (2025). Narrowing the Gap between Adversarial and Stochastic MDPs via Policy Optimization. Proceedings of The 28th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 258:3331-3339 Available from https://proceedings.mlr.press/v258/tiapkin25a.html.

Related Material