wav2sleep: A Unified Multi-Modal Approach to Sleep Stage Classification from Physiological Signals

Jonathan F. Carter, Lionel Tarassenko
Proceedings of the 4th Machine Learning for Health Symposium, PMLR 259:186-202, 2025.

Abstract

Accurate classification of sleep stages from less obtrusive sensor measurements such as the electrocardiogram (ECG) or photoplethysmogram (PPG) could enable important applications in sleep medicine. Existing approaches to this problem have typically used deep learning models designed and trained to operate on one or more specific input signals. However, the datasets used to develop these models often do not contain the same sets of input signals. Some signals, particularly PPG, are much less prevalent than others, and this has previously been addressed with techniques such as transfer learning. Additionally, only training on one or more fixed modalities precludes cross-modal information transfer from other sources, which has proved valuable in other problem domains. To address this, we introduce wav2sleep, a unified model designed to operate on variable sets of input signals during training and inference. After jointly training on over 10,000 overnight recordings from six publicly available polysomnography datasets, including SHHS and MESA, wav2sleep outperforms existing sleep stage classification models across test-time input combinations including ECG, PPG, and respiratory signals.

Cite this Paper


BibTeX
@InProceedings{pmlr-v259-carter25a, title = {wav2sleep: A Unified Multi-Modal Approach to Sleep Stage Classification from Physiological Signals}, author = {Carter, Jonathan F. and Tarassenko, Lionel}, booktitle = {Proceedings of the 4th Machine Learning for Health Symposium}, pages = {186--202}, year = {2025}, editor = {Hegselmann, Stefan and Zhou, Helen and Healey, Elizabeth and Chang, Trenton and Ellington, Caleb and Mhasawade, Vishwali and Tonekaboni, Sana and Argaw, Peniel and Zhang, Haoran}, volume = {259}, series = {Proceedings of Machine Learning Research}, month = {15--16 Dec}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v259/main/assets/carter25a/carter25a.pdf}, url = {https://proceedings.mlr.press/v259/carter25a.html}, abstract = {Accurate classification of sleep stages from less obtrusive sensor measurements such as the electrocardiogram (ECG) or photoplethysmogram (PPG) could enable important applications in sleep medicine. Existing approaches to this problem have typically used deep learning models designed and trained to operate on one or more specific input signals. However, the datasets used to develop these models often do not contain the same sets of input signals. Some signals, particularly PPG, are much less prevalent than others, and this has previously been addressed with techniques such as transfer learning. Additionally, only training on one or more fixed modalities precludes cross-modal information transfer from other sources, which has proved valuable in other problem domains. To address this, we introduce wav2sleep, a unified model designed to operate on variable sets of input signals during training and inference. After jointly training on over 10,000 overnight recordings from six publicly available polysomnography datasets, including SHHS and MESA, wav2sleep outperforms existing sleep stage classification models across test-time input combinations including ECG, PPG, and respiratory signals.} }
Endnote
%0 Conference Paper %T wav2sleep: A Unified Multi-Modal Approach to Sleep Stage Classification from Physiological Signals %A Jonathan F. Carter %A Lionel Tarassenko %B Proceedings of the 4th Machine Learning for Health Symposium %C Proceedings of Machine Learning Research %D 2025 %E Stefan Hegselmann %E Helen Zhou %E Elizabeth Healey %E Trenton Chang %E Caleb Ellington %E Vishwali Mhasawade %E Sana Tonekaboni %E Peniel Argaw %E Haoran Zhang %F pmlr-v259-carter25a %I PMLR %P 186--202 %U https://proceedings.mlr.press/v259/carter25a.html %V 259 %X Accurate classification of sleep stages from less obtrusive sensor measurements such as the electrocardiogram (ECG) or photoplethysmogram (PPG) could enable important applications in sleep medicine. Existing approaches to this problem have typically used deep learning models designed and trained to operate on one or more specific input signals. However, the datasets used to develop these models often do not contain the same sets of input signals. Some signals, particularly PPG, are much less prevalent than others, and this has previously been addressed with techniques such as transfer learning. Additionally, only training on one or more fixed modalities precludes cross-modal information transfer from other sources, which has proved valuable in other problem domains. To address this, we introduce wav2sleep, a unified model designed to operate on variable sets of input signals during training and inference. After jointly training on over 10,000 overnight recordings from six publicly available polysomnography datasets, including SHHS and MESA, wav2sleep outperforms existing sleep stage classification models across test-time input combinations including ECG, PPG, and respiratory signals.
APA
Carter, J.F. & Tarassenko, L.. (2025). wav2sleep: A Unified Multi-Modal Approach to Sleep Stage Classification from Physiological Signals. Proceedings of the 4th Machine Learning for Health Symposium, in Proceedings of Machine Learning Research 259:186-202 Available from https://proceedings.mlr.press/v259/carter25a.html.

Related Material