One-Shot Machine Unlearning with Mnemonic Code

Tomoya Yamashita, Masanori Yamada, Takashi Shibata
Proceedings of the 16th Asian Conference on Machine Learning, PMLR 260:255-270, 2025.

Abstract

Ethical and privacy issues inherent in artificial intelligence (AI) applications have been a growing concern with the rapid spread of deep learning. Machine unlearning (MU) is the research area that addresses these issues by making a trained AI model forget about undesirable training data. Unfortunately, most existing MU methods incur significant time and computational costs for forgetting. Therefore, it is often difficult to apply these methods to practical datasets and sophisticated architectures, e.g., ImageNet and Transformer. To tackle this problem, we propose a lightweight and effective MU method. Our method identifies the model parameters sensitive to the forgetting targets and adds perturbation to such model parameters. We identify the sensitive parameters by calculating the Fisher Information Matrix (FIM). This approach does not require time-consuming additional training for forgetting. In addition, we introduce class-specific random signals called mnemonic code to reduce the cost of FIM calculation, which generally requires the entire training data and incurs significant computational costs. In our method, we train the model with mnemonic code; when forgetting, we use a small number of mnemonic codes to calculate the FIM and get the effective perturbation for forgetting. Comprehensive experiments demonstrate that our method is faster and better at forgetting than existing MU methods. Furthermore, we show that our method can scale to more practical datasets and sophisticated architectures.

Cite this Paper


BibTeX
@InProceedings{pmlr-v260-yamashita25a, title = {One-Shot Machine Unlearning with Mnemonic Code}, author = {Yamashita, Tomoya and Yamada, Masanori and Shibata, Takashi}, booktitle = {Proceedings of the 16th Asian Conference on Machine Learning}, pages = {255--270}, year = {2025}, editor = {Nguyen, Vu and Lin, Hsuan-Tien}, volume = {260}, series = {Proceedings of Machine Learning Research}, month = {05--08 Dec}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v260/main/assets/yamashita25a/yamashita25a.pdf}, url = {https://proceedings.mlr.press/v260/yamashita25a.html}, abstract = {Ethical and privacy issues inherent in artificial intelligence (AI) applications have been a growing concern with the rapid spread of deep learning. Machine unlearning (MU) is the research area that addresses these issues by making a trained AI model forget about undesirable training data. Unfortunately, most existing MU methods incur significant time and computational costs for forgetting. Therefore, it is often difficult to apply these methods to practical datasets and sophisticated architectures, e.g., ImageNet and Transformer. To tackle this problem, we propose a lightweight and effective MU method. Our method identifies the model parameters sensitive to the forgetting targets and adds perturbation to such model parameters. We identify the sensitive parameters by calculating the Fisher Information Matrix (FIM). This approach does not require time-consuming additional training for forgetting. In addition, we introduce class-specific random signals called mnemonic code to reduce the cost of FIM calculation, which generally requires the entire training data and incurs significant computational costs. In our method, we train the model with mnemonic code; when forgetting, we use a small number of mnemonic codes to calculate the FIM and get the effective perturbation for forgetting. Comprehensive experiments demonstrate that our method is faster and better at forgetting than existing MU methods. Furthermore, we show that our method can scale to more practical datasets and sophisticated architectures.} }
Endnote
%0 Conference Paper %T One-Shot Machine Unlearning with Mnemonic Code %A Tomoya Yamashita %A Masanori Yamada %A Takashi Shibata %B Proceedings of the 16th Asian Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Vu Nguyen %E Hsuan-Tien Lin %F pmlr-v260-yamashita25a %I PMLR %P 255--270 %U https://proceedings.mlr.press/v260/yamashita25a.html %V 260 %X Ethical and privacy issues inherent in artificial intelligence (AI) applications have been a growing concern with the rapid spread of deep learning. Machine unlearning (MU) is the research area that addresses these issues by making a trained AI model forget about undesirable training data. Unfortunately, most existing MU methods incur significant time and computational costs for forgetting. Therefore, it is often difficult to apply these methods to practical datasets and sophisticated architectures, e.g., ImageNet and Transformer. To tackle this problem, we propose a lightweight and effective MU method. Our method identifies the model parameters sensitive to the forgetting targets and adds perturbation to such model parameters. We identify the sensitive parameters by calculating the Fisher Information Matrix (FIM). This approach does not require time-consuming additional training for forgetting. In addition, we introduce class-specific random signals called mnemonic code to reduce the cost of FIM calculation, which generally requires the entire training data and incurs significant computational costs. In our method, we train the model with mnemonic code; when forgetting, we use a small number of mnemonic codes to calculate the FIM and get the effective perturbation for forgetting. Comprehensive experiments demonstrate that our method is faster and better at forgetting than existing MU methods. Furthermore, we show that our method can scale to more practical datasets and sophisticated architectures.
APA
Yamashita, T., Yamada, M. & Shibata, T.. (2025). One-Shot Machine Unlearning with Mnemonic Code. Proceedings of the 16th Asian Conference on Machine Learning, in Proceedings of Machine Learning Research 260:255-270 Available from https://proceedings.mlr.press/v260/yamashita25a.html.

Related Material