Improving Multi-candidate Speculative Decoding

XiaoFan Lu, Yixiao Zeng, Marco Levorato, FeiYang Ma, ZiXu Yu
Proceedings of The 4th NeurIPS Efficient Natural Language and Speech Processing Workshop, PMLR 262:382-394, 2024.

Abstract

Speculative Decoding (SD) is a technique to accelerate the inference of Large Language Models (LLMs) by using a lower complexity draft model to propose candidate tokens verified by a larger target model. To further improve efficiency, Multi-Candidate Speculative Decoding (MCSD) improves upon this by sampling multiple candidate tokens from the draft model at each step and verifying them in parallel, thus increasing the chances of accepting a token and reducing generation time. Existing MCSD methods rely on the draft model to initialize the multi-candidate sequences and use static length and tree attention structure for draft generation. However, such an approach suffers from the draft and target model’s output distribution differences, especially in a dynamic generation context. In this work, we introduce a new version of MCSD that includes a target model initialized multi-candidate generation, a dynamic sliced topology-aware causal mask for dynamic length adjustment, and decision models to optimize early stopping. We experimented with our method on Llama 2-7B and its variants and observed a maximum 27.5% speedup compared to our MCSD baseline across three benchmarks with Llama 2-7B as the target model and JackFram 68M as the draft model. Additionally, we evaluate the effects of using the target model initialized multi-candidate process with different draft models on output quality.

Cite this Paper


BibTeX
@InProceedings{pmlr-v262-lu24a, title = {Improving Multi-candidate Speculative Decoding}, author = {Lu, XiaoFan and Zeng, Yixiao and Levorato, Marco and Ma, FeiYang and Yu, ZiXu}, booktitle = {Proceedings of The 4th NeurIPS Efficient Natural Language and Speech Processing Workshop}, pages = {382--394}, year = {2024}, editor = {Rezagholizadeh, Mehdi and Passban, Peyman and Samiee, Soheila and Partovi Nia, Vahid and Cheng, Yu and Deng, Yue and Liu, Qun and Chen, Boxing}, volume = {262}, series = {Proceedings of Machine Learning Research}, month = {14 Dec}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v262/main/assets/lu24a/lu24a.pdf}, url = {https://proceedings.mlr.press/v262/lu24a.html}, abstract = {Speculative Decoding (SD) is a technique to accelerate the inference of Large Language Models (LLMs) by using a lower complexity draft model to propose candidate tokens verified by a larger target model. To further improve efficiency, Multi-Candidate Speculative Decoding (MCSD) improves upon this by sampling multiple candidate tokens from the draft model at each step and verifying them in parallel, thus increasing the chances of accepting a token and reducing generation time. Existing MCSD methods rely on the draft model to initialize the multi-candidate sequences and use static length and tree attention structure for draft generation. However, such an approach suffers from the draft and target model’s output distribution differences, especially in a dynamic generation context. In this work, we introduce a new version of MCSD that includes a target model initialized multi-candidate generation, a dynamic sliced topology-aware causal mask for dynamic length adjustment, and decision models to optimize early stopping. We experimented with our method on Llama 2-7B and its variants and observed a maximum 27.5% speedup compared to our MCSD baseline across three benchmarks with Llama 2-7B as the target model and JackFram 68M as the draft model. Additionally, we evaluate the effects of using the target model initialized multi-candidate process with different draft models on output quality.} }
Endnote
%0 Conference Paper %T Improving Multi-candidate Speculative Decoding %A XiaoFan Lu %A Yixiao Zeng %A Marco Levorato %A FeiYang Ma %A ZiXu Yu %B Proceedings of The 4th NeurIPS Efficient Natural Language and Speech Processing Workshop %C Proceedings of Machine Learning Research %D 2024 %E Mehdi Rezagholizadeh %E Peyman Passban %E Soheila Samiee %E Vahid Partovi Nia %E Yu Cheng %E Yue Deng %E Qun Liu %E Boxing Chen %F pmlr-v262-lu24a %I PMLR %P 382--394 %U https://proceedings.mlr.press/v262/lu24a.html %V 262 %X Speculative Decoding (SD) is a technique to accelerate the inference of Large Language Models (LLMs) by using a lower complexity draft model to propose candidate tokens verified by a larger target model. To further improve efficiency, Multi-Candidate Speculative Decoding (MCSD) improves upon this by sampling multiple candidate tokens from the draft model at each step and verifying them in parallel, thus increasing the chances of accepting a token and reducing generation time. Existing MCSD methods rely on the draft model to initialize the multi-candidate sequences and use static length and tree attention structure for draft generation. However, such an approach suffers from the draft and target model’s output distribution differences, especially in a dynamic generation context. In this work, we introduce a new version of MCSD that includes a target model initialized multi-candidate generation, a dynamic sliced topology-aware causal mask for dynamic length adjustment, and decision models to optimize early stopping. We experimented with our method on Llama 2-7B and its variants and observed a maximum 27.5% speedup compared to our MCSD baseline across three benchmarks with Llama 2-7B as the target model and JackFram 68M as the draft model. Additionally, we evaluate the effects of using the target model initialized multi-candidate process with different draft models on output quality.
APA
Lu, X., Zeng, Y., Levorato, M., Ma, F. & Yu, Z.. (2024). Improving Multi-candidate Speculative Decoding. Proceedings of The 4th NeurIPS Efficient Natural Language and Speech Processing Workshop, in Proceedings of Machine Learning Research 262:382-394 Available from https://proceedings.mlr.press/v262/lu24a.html.

Related Material