[edit]
Post-Training Statistical Calibration for Higher Activation Sparsity
Proceedings of The 4th NeurIPS Efficient Natural Language and Speech Processing Workshop, PMLR 262:206-221, 2024.
Abstract
We present Statistical Calibrated Activation Pruning (SCAP), a post-training activation pruning framework that (1) generalizes sparsification by input activations of Fully-Connected layers for generic and flexible application across Transformers, and (2) features a simple Mode-Centering technique to pre-calibrate activation distributions for maximizing post-training sparsity. Our results demonstrate robust Pareto efficiency compared to prior methods, translating to a 1.5× additional LLM decoding speedup against CATS[12] at iso model quality. SCAP effectiveness is empirically verified across a wide range of models, including recent Transformer Decoders, MoE, Mamba2, Encoding Transformer, and pre-quantized models, highlighting its practicality and scalability. The code is available at https://github.com/IntelLabs/SCAP.