Zipper: A Multi-Tower Decoder Architecture for Fusing Modalities

Vicky Zayats, Peter Chen, Melissa Ferrari, Dirk Padfield
Proceedings of The 4th NeurIPS Efficient Natural Language and Speech Processing Workshop, PMLR 262:123-135, 2024.

Abstract

Integrating multiple generative foundation models, especially those trained on different modalities, into something greater than the sum of its parts poses significant challenges. Two key hurdles are the availability of aligned data (concepts that contain similar meaning but is expressed differently in different modalities), and effectively leveraging unimodal representations in cross-domain generative tasks, without compromising their original unimodal capabilities. We propose Zipper, a multi-tower decoder architecture that addresses these concerns by using cross-attention to flexibly compose multimodal generative models from independently pre-trained unimodal decoders. In our experiments fusing speech and text modalities, we show the proposed architecture performs very competitively in scenarios with limited aligned text-speech data. We also showcase the flexibility of our model to selectively maintain unimodal (e.g., text-to-text generation) generation performance by freezing the corresponding modal tower (e.g. text). In cross-modal tasks such as automatic speech recognition (ASR) where the output modality is text, we show that freezing the text backbone results in negligible performance degradation. In cross-modal tasks such as text-to-speech generation (TTS) where the output modality is speech, we show that using a pre-trained speech backbone results in superior performance to the baseline.

Cite this Paper


BibTeX
@InProceedings{pmlr-v262-zayats24a, title = {Zipper: A Multi-Tower Decoder Architecture for Fusing Modalities}, author = {Zayats, Vicky and Chen, Peter and Ferrari, Melissa and Padfield, Dirk}, booktitle = {Proceedings of The 4th NeurIPS Efficient Natural Language and Speech Processing Workshop}, pages = {123--135}, year = {2024}, editor = {Rezagholizadeh, Mehdi and Passban, Peyman and Samiee, Soheila and Partovi Nia, Vahid and Cheng, Yu and Deng, Yue and Liu, Qun and Chen, Boxing}, volume = {262}, series = {Proceedings of Machine Learning Research}, month = {14 Dec}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v262/main/assets/zayats24a/zayats24a.pdf}, url = {https://proceedings.mlr.press/v262/zayats24a.html}, abstract = {Integrating multiple generative foundation models, especially those trained on different modalities, into something greater than the sum of its parts poses significant challenges. Two key hurdles are the availability of aligned data (concepts that contain similar meaning but is expressed differently in different modalities), and effectively leveraging unimodal representations in cross-domain generative tasks, without compromising their original unimodal capabilities. We propose Zipper, a multi-tower decoder architecture that addresses these concerns by using cross-attention to flexibly compose multimodal generative models from independently pre-trained unimodal decoders. In our experiments fusing speech and text modalities, we show the proposed architecture performs very competitively in scenarios with limited aligned text-speech data. We also showcase the flexibility of our model to selectively maintain unimodal (e.g., text-to-text generation) generation performance by freezing the corresponding modal tower (e.g. text). In cross-modal tasks such as automatic speech recognition (ASR) where the output modality is text, we show that freezing the text backbone results in negligible performance degradation. In cross-modal tasks such as text-to-speech generation (TTS) where the output modality is speech, we show that using a pre-trained speech backbone results in superior performance to the baseline.} }
Endnote
%0 Conference Paper %T Zipper: A Multi-Tower Decoder Architecture for Fusing Modalities %A Vicky Zayats %A Peter Chen %A Melissa Ferrari %A Dirk Padfield %B Proceedings of The 4th NeurIPS Efficient Natural Language and Speech Processing Workshop %C Proceedings of Machine Learning Research %D 2024 %E Mehdi Rezagholizadeh %E Peyman Passban %E Soheila Samiee %E Vahid Partovi Nia %E Yu Cheng %E Yue Deng %E Qun Liu %E Boxing Chen %F pmlr-v262-zayats24a %I PMLR %P 123--135 %U https://proceedings.mlr.press/v262/zayats24a.html %V 262 %X Integrating multiple generative foundation models, especially those trained on different modalities, into something greater than the sum of its parts poses significant challenges. Two key hurdles are the availability of aligned data (concepts that contain similar meaning but is expressed differently in different modalities), and effectively leveraging unimodal representations in cross-domain generative tasks, without compromising their original unimodal capabilities. We propose Zipper, a multi-tower decoder architecture that addresses these concerns by using cross-attention to flexibly compose multimodal generative models from independently pre-trained unimodal decoders. In our experiments fusing speech and text modalities, we show the proposed architecture performs very competitively in scenarios with limited aligned text-speech data. We also showcase the flexibility of our model to selectively maintain unimodal (e.g., text-to-text generation) generation performance by freezing the corresponding modal tower (e.g. text). In cross-modal tasks such as automatic speech recognition (ASR) where the output modality is text, we show that freezing the text backbone results in negligible performance degradation. In cross-modal tasks such as text-to-speech generation (TTS) where the output modality is speech, we show that using a pre-trained speech backbone results in superior performance to the baseline.
APA
Zayats, V., Chen, P., Ferrari, M. & Padfield, D.. (2024). Zipper: A Multi-Tower Decoder Architecture for Fusing Modalities. Proceedings of The 4th NeurIPS Efficient Natural Language and Speech Processing Workshop, in Proceedings of Machine Learning Research 262:123-135 Available from https://proceedings.mlr.press/v262/zayats24a.html.

Related Material