Faster Rates for Private Adversarial Bandits

Hilal Asi, Vinod Raman, Kunal Talwar
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:1796-1832, 2025.

Abstract

We design new differentially private algorithms for the problems of adversarial bandits and bandits with expert advice. For adversarial bandits, we give a simple and efficient conversion of any non-private bandit algorithm to a private bandit algorithm. Instantiating our conversion with existing non-private bandit algorithms gives a regret upper bound of $O\left(\frac{\sqrt{KT}}{\sqrt{\epsilon}}\right)$, improving upon the existing upper bound $O\left(\frac{\sqrt{KT \log(KT)}}{\epsilon}\right)$ for all $\epsilon \leq 1$. In particular, our algorithms allow for sublinear expected regret even when $\epsilon \leq \frac{1}{\sqrt{T}}$, establishing the first known separation between central and local differential privacy for this problem. For bandits with expert advice, we give the first differentially private algorithms, with expected regret $O\left(\frac{\sqrt{NT}}{\sqrt{\epsilon}}\right), O\left(\frac{\sqrt{KT\log(N)}\log(KT)}{\epsilon}\right)$, and $\tilde{O}\left(\frac{N^{1/6}K^{1/2}T^{2/3}\log(NT)}{\epsilon ^{1/3}} + \frac{N^{1/2}\log(NT)}{\epsilon}\right)$, where $K$ and $N$ are the number of actions and experts respectively. These rates allow us to get sublinear regret for different combinations of small and large $K, N$ and $\epsilon.$

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-asi25b, title = {Faster Rates for Private Adversarial Bandits}, author = {Asi, Hilal and Raman, Vinod and Talwar, Kunal}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {1796--1832}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/asi25b/asi25b.pdf}, url = {https://proceedings.mlr.press/v267/asi25b.html}, abstract = {We design new differentially private algorithms for the problems of adversarial bandits and bandits with expert advice. For adversarial bandits, we give a simple and efficient conversion of any non-private bandit algorithm to a private bandit algorithm. Instantiating our conversion with existing non-private bandit algorithms gives a regret upper bound of $O\left(\frac{\sqrt{KT}}{\sqrt{\epsilon}}\right)$, improving upon the existing upper bound $O\left(\frac{\sqrt{KT \log(KT)}}{\epsilon}\right)$ for all $\epsilon \leq 1$. In particular, our algorithms allow for sublinear expected regret even when $\epsilon \leq \frac{1}{\sqrt{T}}$, establishing the first known separation between central and local differential privacy for this problem. For bandits with expert advice, we give the first differentially private algorithms, with expected regret $O\left(\frac{\sqrt{NT}}{\sqrt{\epsilon}}\right), O\left(\frac{\sqrt{KT\log(N)}\log(KT)}{\epsilon}\right)$, and $\tilde{O}\left(\frac{N^{1/6}K^{1/2}T^{2/3}\log(NT)}{\epsilon ^{1/3}} + \frac{N^{1/2}\log(NT)}{\epsilon}\right)$, where $K$ and $N$ are the number of actions and experts respectively. These rates allow us to get sublinear regret for different combinations of small and large $K, N$ and $\epsilon.$} }
Endnote
%0 Conference Paper %T Faster Rates for Private Adversarial Bandits %A Hilal Asi %A Vinod Raman %A Kunal Talwar %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-asi25b %I PMLR %P 1796--1832 %U https://proceedings.mlr.press/v267/asi25b.html %V 267 %X We design new differentially private algorithms for the problems of adversarial bandits and bandits with expert advice. For adversarial bandits, we give a simple and efficient conversion of any non-private bandit algorithm to a private bandit algorithm. Instantiating our conversion with existing non-private bandit algorithms gives a regret upper bound of $O\left(\frac{\sqrt{KT}}{\sqrt{\epsilon}}\right)$, improving upon the existing upper bound $O\left(\frac{\sqrt{KT \log(KT)}}{\epsilon}\right)$ for all $\epsilon \leq 1$. In particular, our algorithms allow for sublinear expected regret even when $\epsilon \leq \frac{1}{\sqrt{T}}$, establishing the first known separation between central and local differential privacy for this problem. For bandits with expert advice, we give the first differentially private algorithms, with expected regret $O\left(\frac{\sqrt{NT}}{\sqrt{\epsilon}}\right), O\left(\frac{\sqrt{KT\log(N)}\log(KT)}{\epsilon}\right)$, and $\tilde{O}\left(\frac{N^{1/6}K^{1/2}T^{2/3}\log(NT)}{\epsilon ^{1/3}} + \frac{N^{1/2}\log(NT)}{\epsilon}\right)$, where $K$ and $N$ are the number of actions and experts respectively. These rates allow us to get sublinear regret for different combinations of small and large $K, N$ and $\epsilon.$
APA
Asi, H., Raman, V. & Talwar, K.. (2025). Faster Rates for Private Adversarial Bandits. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:1796-1832 Available from https://proceedings.mlr.press/v267/asi25b.html.

Related Material