PAC Learning with Improvements

Idan Attias, Avrim Blum, Keziah Naggita, Donya Saless, Dravyansh Sharma, Matthew Walter
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:1950-1981, 2025.

Abstract

One of the most basic lower bounds in machine learning is that in nearly any nontrivial setting, it takes at least $1/\epsilon$ samples to learn to error $\epsilon$ (and more, if the classifier being learned is complex). However, suppose that data points are agents who have the ability to improve by a small amount if doing so will allow them to receive a (desired) positive classification. In that case, we may actually be able to achieve zero error by just being "close enough". For example, imagine a hiring test used to measure an agent’s skill at some job such that for some threshold $\theta$, agents who score above $\theta$ will be successful and those who score below $\theta$ will not (i.e., learning a threshold on the line). Suppose also that by putting in effort, agents can improve their skill level by some small amount $r$. In that case, if we learn an approximation $\hat{\theta}$ of $\theta$ such that $\theta \leq \hat{\theta} \leq \theta + r$ and use it for hiring, we can actually achieve error zero, in the sense that (a) any agent classified as positive is truly qualified, and (b) any agent who truly is qualified can be classified as positive by putting in effort. Thus, the ability for agents to improve has the potential to allow for a goal one could not hope to achieve in standard models, namely zero error. In this paper, we explore this phenomenon more broadly, giving general results and examining under what conditions the ability of agents to improve can allow for a reduction in the sample complexity of learning, or alternatively, can make learning harder. We also examine both theoretically and empirically what kinds of improvement-aware algorithms can take into account agents who have the ability to improve to a limited extent when it is in their interest to do so.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-attias25a, title = {{PAC} Learning with Improvements}, author = {Attias, Idan and Blum, Avrim and Naggita, Keziah and Saless, Donya and Sharma, Dravyansh and Walter, Matthew}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {1950--1981}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/attias25a/attias25a.pdf}, url = {https://proceedings.mlr.press/v267/attias25a.html}, abstract = {One of the most basic lower bounds in machine learning is that in nearly any nontrivial setting, it takes at least $1/\epsilon$ samples to learn to error $\epsilon$ (and more, if the classifier being learned is complex). However, suppose that data points are agents who have the ability to improve by a small amount if doing so will allow them to receive a (desired) positive classification. In that case, we may actually be able to achieve zero error by just being "close enough". For example, imagine a hiring test used to measure an agent’s skill at some job such that for some threshold $\theta$, agents who score above $\theta$ will be successful and those who score below $\theta$ will not (i.e., learning a threshold on the line). Suppose also that by putting in effort, agents can improve their skill level by some small amount $r$. In that case, if we learn an approximation $\hat{\theta}$ of $\theta$ such that $\theta \leq \hat{\theta} \leq \theta + r$ and use it for hiring, we can actually achieve error zero, in the sense that (a) any agent classified as positive is truly qualified, and (b) any agent who truly is qualified can be classified as positive by putting in effort. Thus, the ability for agents to improve has the potential to allow for a goal one could not hope to achieve in standard models, namely zero error. In this paper, we explore this phenomenon more broadly, giving general results and examining under what conditions the ability of agents to improve can allow for a reduction in the sample complexity of learning, or alternatively, can make learning harder. We also examine both theoretically and empirically what kinds of improvement-aware algorithms can take into account agents who have the ability to improve to a limited extent when it is in their interest to do so.} }
Endnote
%0 Conference Paper %T PAC Learning with Improvements %A Idan Attias %A Avrim Blum %A Keziah Naggita %A Donya Saless %A Dravyansh Sharma %A Matthew Walter %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-attias25a %I PMLR %P 1950--1981 %U https://proceedings.mlr.press/v267/attias25a.html %V 267 %X One of the most basic lower bounds in machine learning is that in nearly any nontrivial setting, it takes at least $1/\epsilon$ samples to learn to error $\epsilon$ (and more, if the classifier being learned is complex). However, suppose that data points are agents who have the ability to improve by a small amount if doing so will allow them to receive a (desired) positive classification. In that case, we may actually be able to achieve zero error by just being "close enough". For example, imagine a hiring test used to measure an agent’s skill at some job such that for some threshold $\theta$, agents who score above $\theta$ will be successful and those who score below $\theta$ will not (i.e., learning a threshold on the line). Suppose also that by putting in effort, agents can improve their skill level by some small amount $r$. In that case, if we learn an approximation $\hat{\theta}$ of $\theta$ such that $\theta \leq \hat{\theta} \leq \theta + r$ and use it for hiring, we can actually achieve error zero, in the sense that (a) any agent classified as positive is truly qualified, and (b) any agent who truly is qualified can be classified as positive by putting in effort. Thus, the ability for agents to improve has the potential to allow for a goal one could not hope to achieve in standard models, namely zero error. In this paper, we explore this phenomenon more broadly, giving general results and examining under what conditions the ability of agents to improve can allow for a reduction in the sample complexity of learning, or alternatively, can make learning harder. We also examine both theoretically and empirically what kinds of improvement-aware algorithms can take into account agents who have the ability to improve to a limited extent when it is in their interest to do so.
APA
Attias, I., Blum, A., Naggita, K., Saless, D., Sharma, D. & Walter, M.. (2025). PAC Learning with Improvements. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:1950-1981 Available from https://proceedings.mlr.press/v267/attias25a.html.

Related Material