[edit]
QEM-Bench: Benchmarking Learning-based Quantum Error Mitigation and QEMFormer as a Multi-ranged Context Learning Baseline
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:2953-2967, 2025.
Abstract
Quantum Error Mitigation (QEM) has emerged as a pivotal technique for enhancing the reliability of noisy quantum devices in the Noisy Intermediate-Scale Quantum (NISQ) era. Recently, machine learning (ML)-based QEM approaches have demonstrated strong generalization capabilities without sampling overheads compared to conventional methods. However, evaluating these techniques is often hindered by a lack of standardized datasets and inconsistent experimental settings across different studies. In this work, we present QEM-Bench, a comprehensive benchmark suite of twenty-two datasets covering diverse circuit types and noise profiles, which provides a unified platform for comparing and advancing ML-based QEM methods. We further propose a refined ML-based QEM pipeline QEMFormer, which leverages a feature encoder that preserves local, global, and topological information, along with a two-branch model that captures short-range and long-range dependencies within the circuit. Empirical evaluations on QEM-Bench illustrate the superior performance of QEMFormer over existing baselines, underscoring the potential of integrated ML-QEM strategies.