On Volume Minimization in Conformal Regression

Batiste Le Bars, Pierre Humbert
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:3030-3053, 2025.

Abstract

We study the question of volume optimality in split conformal regression, a topic still poorly understood in comparison to coverage control. Using the fact that the calibration step can be seen as an empirical volume minimization problem, we first derive a finite-sample upper-bound on the excess volume loss of the interval returned by the classical split method. This important quantity measures the difference in length between the interval obtained with the split method and the shortest oracle prediction interval. Then, we introduce EffOrt, a methodology that modifies the learning step so that the base prediction function is selected in order to minimize the length of the returned intervals. In particular, our theoretical analysis of the excess volume loss of the prediction sets produced by EffOrt reveals the links between the learning and calibration steps, and notably the impact of the choice of the function class of the base predictor. We also introduce Ad-EffOrt, an extension of the previous method, which produces intervals whose size adapts to the value of the covariate. Finally, we evaluate the empirical performance and the robustness of our methodologies.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-bars25a, title = {On Volume Minimization in Conformal Regression}, author = {Bars, Batiste Le and Humbert, Pierre}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {3030--3053}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/bars25a/bars25a.pdf}, url = {https://proceedings.mlr.press/v267/bars25a.html}, abstract = {We study the question of volume optimality in split conformal regression, a topic still poorly understood in comparison to coverage control. Using the fact that the calibration step can be seen as an empirical volume minimization problem, we first derive a finite-sample upper-bound on the excess volume loss of the interval returned by the classical split method. This important quantity measures the difference in length between the interval obtained with the split method and the shortest oracle prediction interval. Then, we introduce EffOrt, a methodology that modifies the learning step so that the base prediction function is selected in order to minimize the length of the returned intervals. In particular, our theoretical analysis of the excess volume loss of the prediction sets produced by EffOrt reveals the links between the learning and calibration steps, and notably the impact of the choice of the function class of the base predictor. We also introduce Ad-EffOrt, an extension of the previous method, which produces intervals whose size adapts to the value of the covariate. Finally, we evaluate the empirical performance and the robustness of our methodologies.} }
Endnote
%0 Conference Paper %T On Volume Minimization in Conformal Regression %A Batiste Le Bars %A Pierre Humbert %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-bars25a %I PMLR %P 3030--3053 %U https://proceedings.mlr.press/v267/bars25a.html %V 267 %X We study the question of volume optimality in split conformal regression, a topic still poorly understood in comparison to coverage control. Using the fact that the calibration step can be seen as an empirical volume minimization problem, we first derive a finite-sample upper-bound on the excess volume loss of the interval returned by the classical split method. This important quantity measures the difference in length between the interval obtained with the split method and the shortest oracle prediction interval. Then, we introduce EffOrt, a methodology that modifies the learning step so that the base prediction function is selected in order to minimize the length of the returned intervals. In particular, our theoretical analysis of the excess volume loss of the prediction sets produced by EffOrt reveals the links between the learning and calibration steps, and notably the impact of the choice of the function class of the base predictor. We also introduce Ad-EffOrt, an extension of the previous method, which produces intervals whose size adapts to the value of the covariate. Finally, we evaluate the empirical performance and the robustness of our methodologies.
APA
Bars, B.L. & Humbert, P.. (2025). On Volume Minimization in Conformal Regression. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:3030-3053 Available from https://proceedings.mlr.press/v267/bars25a.html.

Related Material