AGAV-Rater: Adapting Large Multimodal Model for AI-Generated Audio-Visual Quality Assessment

Yuqin Cao, Xiongkuo Min, Yixuan Gao, Wei Sun, Guangtao Zhai
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:6615-6633, 2025.

Abstract

Many video-to-audio (VTA) methods have been proposed for dubbing silent AI-generated videos. An efficient quality assessment method for AI-generated audio-visual content (AGAV) is crucial for ensuring audio-visual quality. Existing audio-visual quality assessment methods struggle with unique distortions in AGAVs, such as unrealistic and inconsistent elements. To address this, we introduce AGAVQA-3k, the first large-scale AGAV quality assessment dataset, comprising $3,382$ AGAVs from $16$ VTA methods. AGAVQA-3k includes two subsets: AGAVQA-MOS, which provides multi-dimensional scores for audio quality, content consistency, and overall quality, and AGAVQA-Pair, designed for optimal AGAV pair selection. We further propose AGAV-Rater, a LMM-based model that can score AGAVs, as well as audio and music generated from text, across multiple dimensions, and selects the best AGAV generated by VTA methods to present to the user. AGAV-Rater achieves state-of-the-art performance on AGAVQA-3k, Text-to-Audio, and Text-to-Music datasets. Subjective tests also confirm that AGAV-Rater enhances VTA performance and user experience. The dataset and code is available at https://github.com/charlotte9524/AGAV-Rater.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-cao25f, title = {{AGAV}-Rater: Adapting Large Multimodal Model for {AI}-Generated Audio-Visual Quality Assessment}, author = {Cao, Yuqin and Min, Xiongkuo and Gao, Yixuan and Sun, Wei and Zhai, Guangtao}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {6615--6633}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/cao25f/cao25f.pdf}, url = {https://proceedings.mlr.press/v267/cao25f.html}, abstract = {Many video-to-audio (VTA) methods have been proposed for dubbing silent AI-generated videos. An efficient quality assessment method for AI-generated audio-visual content (AGAV) is crucial for ensuring audio-visual quality. Existing audio-visual quality assessment methods struggle with unique distortions in AGAVs, such as unrealistic and inconsistent elements. To address this, we introduce AGAVQA-3k, the first large-scale AGAV quality assessment dataset, comprising $3,382$ AGAVs from $16$ VTA methods. AGAVQA-3k includes two subsets: AGAVQA-MOS, which provides multi-dimensional scores for audio quality, content consistency, and overall quality, and AGAVQA-Pair, designed for optimal AGAV pair selection. We further propose AGAV-Rater, a LMM-based model that can score AGAVs, as well as audio and music generated from text, across multiple dimensions, and selects the best AGAV generated by VTA methods to present to the user. AGAV-Rater achieves state-of-the-art performance on AGAVQA-3k, Text-to-Audio, and Text-to-Music datasets. Subjective tests also confirm that AGAV-Rater enhances VTA performance and user experience. The dataset and code is available at https://github.com/charlotte9524/AGAV-Rater.} }
Endnote
%0 Conference Paper %T AGAV-Rater: Adapting Large Multimodal Model for AI-Generated Audio-Visual Quality Assessment %A Yuqin Cao %A Xiongkuo Min %A Yixuan Gao %A Wei Sun %A Guangtao Zhai %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-cao25f %I PMLR %P 6615--6633 %U https://proceedings.mlr.press/v267/cao25f.html %V 267 %X Many video-to-audio (VTA) methods have been proposed for dubbing silent AI-generated videos. An efficient quality assessment method for AI-generated audio-visual content (AGAV) is crucial for ensuring audio-visual quality. Existing audio-visual quality assessment methods struggle with unique distortions in AGAVs, such as unrealistic and inconsistent elements. To address this, we introduce AGAVQA-3k, the first large-scale AGAV quality assessment dataset, comprising $3,382$ AGAVs from $16$ VTA methods. AGAVQA-3k includes two subsets: AGAVQA-MOS, which provides multi-dimensional scores for audio quality, content consistency, and overall quality, and AGAVQA-Pair, designed for optimal AGAV pair selection. We further propose AGAV-Rater, a LMM-based model that can score AGAVs, as well as audio and music generated from text, across multiple dimensions, and selects the best AGAV generated by VTA methods to present to the user. AGAV-Rater achieves state-of-the-art performance on AGAVQA-3k, Text-to-Audio, and Text-to-Music datasets. Subjective tests also confirm that AGAV-Rater enhances VTA performance and user experience. The dataset and code is available at https://github.com/charlotte9524/AGAV-Rater.
APA
Cao, Y., Min, X., Gao, Y., Sun, W. & Zhai, G.. (2025). AGAV-Rater: Adapting Large Multimodal Model for AI-Generated Audio-Visual Quality Assessment. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:6615-6633 Available from https://proceedings.mlr.press/v267/cao25f.html.

Related Material