Transfer Q-Learning with Composite MDP Structures

Jinhang Chai, Elynn Chen, Lin Yang
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:7089-7106, 2025.

Abstract

To bridge the gap between empirical success and theoretical understanding in transfer reinforcement learning (RL), we study a principled approach with provable performance guarantees. We introduce a novel composite MDP framework where high-dimensional transition dynamics are modeled as the sum of a low-rank component representing shared structure and a sparse component capturing task-specific variations. This relaxes the common assumption of purely low-rank transition models, allowing for more realistic scenarios where tasks share core dynamics but maintain individual variations. We introduce UCB-TQL (Upper Confidence Bound Transfer Q-Learning), designed for transfer RL scenarios where multiple tasks share core linear MDP dynamics but diverge along sparse dimensions. When applying UCB-TQL to a target task after training on a source task with sufficient trajectories, we achieve a regret bound of $\tilde{\mathcal{O}}(\sqrt{eH^5N})$ that scales independently of the ambient dimension. Here, $N$ represents the number of trajectories in the target task, while $e$ quantifies the sparse differences between tasks. This result demonstrates substantial improvement over single task RL by effectively leveraging their structural similarities. Our theoretical analysis provides rigorous guarantees for how UCB-TQL simultaneously exploits shared dynamics while adapting to task-specific variations.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-chai25b, title = {Transfer Q-Learning with Composite {MDP} Structures}, author = {Chai, Jinhang and Chen, Elynn and Yang, Lin}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {7089--7106}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/chai25b/chai25b.pdf}, url = {https://proceedings.mlr.press/v267/chai25b.html}, abstract = {To bridge the gap between empirical success and theoretical understanding in transfer reinforcement learning (RL), we study a principled approach with provable performance guarantees. We introduce a novel composite MDP framework where high-dimensional transition dynamics are modeled as the sum of a low-rank component representing shared structure and a sparse component capturing task-specific variations. This relaxes the common assumption of purely low-rank transition models, allowing for more realistic scenarios where tasks share core dynamics but maintain individual variations. We introduce UCB-TQL (Upper Confidence Bound Transfer Q-Learning), designed for transfer RL scenarios where multiple tasks share core linear MDP dynamics but diverge along sparse dimensions. When applying UCB-TQL to a target task after training on a source task with sufficient trajectories, we achieve a regret bound of $\tilde{\mathcal{O}}(\sqrt{eH^5N})$ that scales independently of the ambient dimension. Here, $N$ represents the number of trajectories in the target task, while $e$ quantifies the sparse differences between tasks. This result demonstrates substantial improvement over single task RL by effectively leveraging their structural similarities. Our theoretical analysis provides rigorous guarantees for how UCB-TQL simultaneously exploits shared dynamics while adapting to task-specific variations.} }
Endnote
%0 Conference Paper %T Transfer Q-Learning with Composite MDP Structures %A Jinhang Chai %A Elynn Chen %A Lin Yang %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-chai25b %I PMLR %P 7089--7106 %U https://proceedings.mlr.press/v267/chai25b.html %V 267 %X To bridge the gap between empirical success and theoretical understanding in transfer reinforcement learning (RL), we study a principled approach with provable performance guarantees. We introduce a novel composite MDP framework where high-dimensional transition dynamics are modeled as the sum of a low-rank component representing shared structure and a sparse component capturing task-specific variations. This relaxes the common assumption of purely low-rank transition models, allowing for more realistic scenarios where tasks share core dynamics but maintain individual variations. We introduce UCB-TQL (Upper Confidence Bound Transfer Q-Learning), designed for transfer RL scenarios where multiple tasks share core linear MDP dynamics but diverge along sparse dimensions. When applying UCB-TQL to a target task after training on a source task with sufficient trajectories, we achieve a regret bound of $\tilde{\mathcal{O}}(\sqrt{eH^5N})$ that scales independently of the ambient dimension. Here, $N$ represents the number of trajectories in the target task, while $e$ quantifies the sparse differences between tasks. This result demonstrates substantial improvement over single task RL by effectively leveraging their structural similarities. Our theoretical analysis provides rigorous guarantees for how UCB-TQL simultaneously exploits shared dynamics while adapting to task-specific variations.
APA
Chai, J., Chen, E. & Yang, L.. (2025). Transfer Q-Learning with Composite MDP Structures. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:7089-7106 Available from https://proceedings.mlr.press/v267/chai25b.html.

Related Material