Pareto Merging: Multi-Objective Optimization for Preference-Aware Model Merging

Weiyu Chen, James Kwok
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:8345-8363, 2025.

Abstract

Model merging, which combines multiple models into a single model, has gained popularity in recent years. By efficiently integrating the capabilities of various models, this significantly reduces the parameter count and memory usage. However, current methods can only produce one single merged model. This necessitates a performance trade-off due to conflicts among the various models, and the resultant one-size-fits-all model may not align with the preferences of different users who may prioritize certain models over others. To address this issue, we propose preference-aware model merging, and formulate this as a multi-objective optimization problem in which the performance of the merged model on each base model’s task is treated as an objective. In a single merging process, the proposed parameter-efficient structure generates a Pareto set of merged models, with each representing a Pareto-optimal solution for a preference. Users can then select merged models tailored to their preferences from this learned Pareto set. Experimental results demonstrate that the proposed Pareto Merging produces diverse trade-off models and achieves higher test accuracy compared to state-of-the-art merging baselines.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-chen25af, title = {Pareto Merging: Multi-Objective Optimization for Preference-Aware Model Merging}, author = {Chen, Weiyu and Kwok, James}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {8345--8363}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/chen25af/chen25af.pdf}, url = {https://proceedings.mlr.press/v267/chen25af.html}, abstract = {Model merging, which combines multiple models into a single model, has gained popularity in recent years. By efficiently integrating the capabilities of various models, this significantly reduces the parameter count and memory usage. However, current methods can only produce one single merged model. This necessitates a performance trade-off due to conflicts among the various models, and the resultant one-size-fits-all model may not align with the preferences of different users who may prioritize certain models over others. To address this issue, we propose preference-aware model merging, and formulate this as a multi-objective optimization problem in which the performance of the merged model on each base model’s task is treated as an objective. In a single merging process, the proposed parameter-efficient structure generates a Pareto set of merged models, with each representing a Pareto-optimal solution for a preference. Users can then select merged models tailored to their preferences from this learned Pareto set. Experimental results demonstrate that the proposed Pareto Merging produces diverse trade-off models and achieves higher test accuracy compared to state-of-the-art merging baselines.} }
Endnote
%0 Conference Paper %T Pareto Merging: Multi-Objective Optimization for Preference-Aware Model Merging %A Weiyu Chen %A James Kwok %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-chen25af %I PMLR %P 8345--8363 %U https://proceedings.mlr.press/v267/chen25af.html %V 267 %X Model merging, which combines multiple models into a single model, has gained popularity in recent years. By efficiently integrating the capabilities of various models, this significantly reduces the parameter count and memory usage. However, current methods can only produce one single merged model. This necessitates a performance trade-off due to conflicts among the various models, and the resultant one-size-fits-all model may not align with the preferences of different users who may prioritize certain models over others. To address this issue, we propose preference-aware model merging, and formulate this as a multi-objective optimization problem in which the performance of the merged model on each base model’s task is treated as an objective. In a single merging process, the proposed parameter-efficient structure generates a Pareto set of merged models, with each representing a Pareto-optimal solution for a preference. Users can then select merged models tailored to their preferences from this learned Pareto set. Experimental results demonstrate that the proposed Pareto Merging produces diverse trade-off models and achieves higher test accuracy compared to state-of-the-art merging baselines.
APA
Chen, W. & Kwok, J.. (2025). Pareto Merging: Multi-Objective Optimization for Preference-Aware Model Merging. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:8345-8363 Available from https://proceedings.mlr.press/v267/chen25af.html.

Related Material