Optimal Survey Design for Private Mean Estimation

Yu-Wei Chen, Raghu Pasupathy, Jordan Awan
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:8856-8870, 2025.

Abstract

This work identifies the first privacy-aware stratified sampling scheme that minimizes the variance for general private mean estimation under the Laplace, Discrete Laplace (DLap) and Truncated-Uniform-Laplace (TuLap) mechanisms within the framework of differential privacy (DP). We view stratified sampling as a subsampling operation, which amplifies the privacy guarantee; however, to have the same final privacy guarantee for each group, different nominal privacy budgets need to be used depending on the subsampling rate. Ignoring the effect of DP, traditional stratified sampling strategies risk significant variance inflation. We phrase our optimal survey design as an optimization problem, where we determine the optimal subsampling sizes for each group with the goal of minimizing the variance of the resulting estimator. We establish strong convexity of the variance objective, propose an efficient algorithm to identify the integer-optimal design, and offer insights on the structure of the optimal design.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-chen25ay, title = {Optimal Survey Design for Private Mean Estimation}, author = {Chen, Yu-Wei and Pasupathy, Raghu and Awan, Jordan}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {8856--8870}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/chen25ay/chen25ay.pdf}, url = {https://proceedings.mlr.press/v267/chen25ay.html}, abstract = {This work identifies the first privacy-aware stratified sampling scheme that minimizes the variance for general private mean estimation under the Laplace, Discrete Laplace (DLap) and Truncated-Uniform-Laplace (TuLap) mechanisms within the framework of differential privacy (DP). We view stratified sampling as a subsampling operation, which amplifies the privacy guarantee; however, to have the same final privacy guarantee for each group, different nominal privacy budgets need to be used depending on the subsampling rate. Ignoring the effect of DP, traditional stratified sampling strategies risk significant variance inflation. We phrase our optimal survey design as an optimization problem, where we determine the optimal subsampling sizes for each group with the goal of minimizing the variance of the resulting estimator. We establish strong convexity of the variance objective, propose an efficient algorithm to identify the integer-optimal design, and offer insights on the structure of the optimal design.} }
Endnote
%0 Conference Paper %T Optimal Survey Design for Private Mean Estimation %A Yu-Wei Chen %A Raghu Pasupathy %A Jordan Awan %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-chen25ay %I PMLR %P 8856--8870 %U https://proceedings.mlr.press/v267/chen25ay.html %V 267 %X This work identifies the first privacy-aware stratified sampling scheme that minimizes the variance for general private mean estimation under the Laplace, Discrete Laplace (DLap) and Truncated-Uniform-Laplace (TuLap) mechanisms within the framework of differential privacy (DP). We view stratified sampling as a subsampling operation, which amplifies the privacy guarantee; however, to have the same final privacy guarantee for each group, different nominal privacy budgets need to be used depending on the subsampling rate. Ignoring the effect of DP, traditional stratified sampling strategies risk significant variance inflation. We phrase our optimal survey design as an optimization problem, where we determine the optimal subsampling sizes for each group with the goal of minimizing the variance of the resulting estimator. We establish strong convexity of the variance objective, propose an efficient algorithm to identify the integer-optimal design, and offer insights on the structure of the optimal design.
APA
Chen, Y., Pasupathy, R. & Awan, J.. (2025). Optimal Survey Design for Private Mean Estimation. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:8856-8870 Available from https://proceedings.mlr.press/v267/chen25ay.html.

Related Material