Relational Invariant Learning for Robust Solvation Free Energy Prediction

Yeyun Chen
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:72210-72227, 2025.

Abstract

Predicting the solvation free energy of molecules using graph neural networks holds significant potential for advancing drug discovery and the design of novel materials. While previous methods have demonstrated success on independent and identically distributed (IID) datasets, their performance in out-of-distribution (OOD) scenarios remains largely unexplored. We propose a novel Relational Invariant Learning framework (RILOOD) to enhance OOD generalization in solvation free energy prediction. RILOOD comprises three key components: (i) a mixup-based conditional modeling module that integrates diverse environments, (ii) a novel multi-granularity refinement strategy that extends beyond core substructures to enable context-aware representation learning for capturing multi-level interactions, and (iii) an invariant learning mechanism that identifies robust patterns generalizable to unseen environments. Extensive experiments demonstrate that RILOOD significantly outperforms state-of-the-art methods across various distribution shifts, highlighting its effectiveness in improving solvation free energy prediction under diverse conditions.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-chen25ct, title = {Relational Invariant Learning for Robust Solvation Free Energy Prediction}, author = {Chen, Yeyun}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {72210--72227}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/chen25ct/chen25ct.pdf}, url = {https://proceedings.mlr.press/v267/chen25ct.html}, abstract = {Predicting the solvation free energy of molecules using graph neural networks holds significant potential for advancing drug discovery and the design of novel materials. While previous methods have demonstrated success on independent and identically distributed (IID) datasets, their performance in out-of-distribution (OOD) scenarios remains largely unexplored. We propose a novel Relational Invariant Learning framework (RILOOD) to enhance OOD generalization in solvation free energy prediction. RILOOD comprises three key components: (i) a mixup-based conditional modeling module that integrates diverse environments, (ii) a novel multi-granularity refinement strategy that extends beyond core substructures to enable context-aware representation learning for capturing multi-level interactions, and (iii) an invariant learning mechanism that identifies robust patterns generalizable to unseen environments. Extensive experiments demonstrate that RILOOD significantly outperforms state-of-the-art methods across various distribution shifts, highlighting its effectiveness in improving solvation free energy prediction under diverse conditions.} }
Endnote
%0 Conference Paper %T Relational Invariant Learning for Robust Solvation Free Energy Prediction %A Yeyun Chen %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-chen25ct %I PMLR %P 72210--72227 %U https://proceedings.mlr.press/v267/chen25ct.html %V 267 %X Predicting the solvation free energy of molecules using graph neural networks holds significant potential for advancing drug discovery and the design of novel materials. While previous methods have demonstrated success on independent and identically distributed (IID) datasets, their performance in out-of-distribution (OOD) scenarios remains largely unexplored. We propose a novel Relational Invariant Learning framework (RILOOD) to enhance OOD generalization in solvation free energy prediction. RILOOD comprises three key components: (i) a mixup-based conditional modeling module that integrates diverse environments, (ii) a novel multi-granularity refinement strategy that extends beyond core substructures to enable context-aware representation learning for capturing multi-level interactions, and (iii) an invariant learning mechanism that identifies robust patterns generalizable to unseen environments. Extensive experiments demonstrate that RILOOD significantly outperforms state-of-the-art methods across various distribution shifts, highlighting its effectiveness in improving solvation free energy prediction under diverse conditions.
APA
Chen, Y.. (2025). Relational Invariant Learning for Robust Solvation Free Energy Prediction. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:72210-72227 Available from https://proceedings.mlr.press/v267/chen25ct.html.

Related Material