How does Labeling Error Impact Contrastive Learning? A Perspective from Data Dimensionality Reduction

Jun Chen, Hong Chen, Yonghua Yu, Yiming Ying
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:7912-7933, 2025.

Abstract

In recent years, contrastive learning has achieved state-of-the-art performance in the territory of self-supervised representation learning. Many previous works have attempted to provide the theoretical understanding underlying the success of contrastive learning. Almost all of them rely on a default assumption, i.e., the label consistency assumption, which may not hold in practice (the probability of failure is called labeling error) due to the strength and randomness of common augmentation strategies, such as random resized crop (RRC). This paper investigates the theoretical impact of labeling error on the downstream classification performance of contrastive learning. We first reveal several significant negative impacts of labeling error on downstream classification risk. To mitigate these impacts, data dimensionality reduction method (e.g., singular value decomposition, SVD) is applied on original data to reduce false positive samples, and establish both theoretical and empirical evaluations. Moreover, it is also found that SVD acts as a double-edged sword, which may lead to the deterioration of downstream classification accuracy due to the reduced connectivity of the augmentation graph. Based on the above observations, we give the augmentation suggestion that we should use some moderate embedding dimension (such as $512, 1024$ in our experiments), data inflation, weak augmentation, and SVD to ensure large graph connectivity and small labeling error to improve model performance.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-chen25k, title = {How does Labeling Error Impact Contrastive Learning? {A} Perspective from Data Dimensionality Reduction}, author = {Chen, Jun and Chen, Hong and Yu, Yonghua and Ying, Yiming}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {7912--7933}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/chen25k/chen25k.pdf}, url = {https://proceedings.mlr.press/v267/chen25k.html}, abstract = {In recent years, contrastive learning has achieved state-of-the-art performance in the territory of self-supervised representation learning. Many previous works have attempted to provide the theoretical understanding underlying the success of contrastive learning. Almost all of them rely on a default assumption, i.e., the label consistency assumption, which may not hold in practice (the probability of failure is called labeling error) due to the strength and randomness of common augmentation strategies, such as random resized crop (RRC). This paper investigates the theoretical impact of labeling error on the downstream classification performance of contrastive learning. We first reveal several significant negative impacts of labeling error on downstream classification risk. To mitigate these impacts, data dimensionality reduction method (e.g., singular value decomposition, SVD) is applied on original data to reduce false positive samples, and establish both theoretical and empirical evaluations. Moreover, it is also found that SVD acts as a double-edged sword, which may lead to the deterioration of downstream classification accuracy due to the reduced connectivity of the augmentation graph. Based on the above observations, we give the augmentation suggestion that we should use some moderate embedding dimension (such as $512, 1024$ in our experiments), data inflation, weak augmentation, and SVD to ensure large graph connectivity and small labeling error to improve model performance.} }
Endnote
%0 Conference Paper %T How does Labeling Error Impact Contrastive Learning? A Perspective from Data Dimensionality Reduction %A Jun Chen %A Hong Chen %A Yonghua Yu %A Yiming Ying %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-chen25k %I PMLR %P 7912--7933 %U https://proceedings.mlr.press/v267/chen25k.html %V 267 %X In recent years, contrastive learning has achieved state-of-the-art performance in the territory of self-supervised representation learning. Many previous works have attempted to provide the theoretical understanding underlying the success of contrastive learning. Almost all of them rely on a default assumption, i.e., the label consistency assumption, which may not hold in practice (the probability of failure is called labeling error) due to the strength and randomness of common augmentation strategies, such as random resized crop (RRC). This paper investigates the theoretical impact of labeling error on the downstream classification performance of contrastive learning. We first reveal several significant negative impacts of labeling error on downstream classification risk. To mitigate these impacts, data dimensionality reduction method (e.g., singular value decomposition, SVD) is applied on original data to reduce false positive samples, and establish both theoretical and empirical evaluations. Moreover, it is also found that SVD acts as a double-edged sword, which may lead to the deterioration of downstream classification accuracy due to the reduced connectivity of the augmentation graph. Based on the above observations, we give the augmentation suggestion that we should use some moderate embedding dimension (such as $512, 1024$ in our experiments), data inflation, weak augmentation, and SVD to ensure large graph connectivity and small labeling error to improve model performance.
APA
Chen, J., Chen, H., Yu, Y. & Ying, Y.. (2025). How does Labeling Error Impact Contrastive Learning? A Perspective from Data Dimensionality Reduction. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:7912-7933 Available from https://proceedings.mlr.press/v267/chen25k.html.

Related Material