Low-Rank Adapting Models for Sparse Autoencoders

Matthew Chen, Joshua Engels, Max Tegmark
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:8077-8092, 2025.

Abstract

Sparse autoencoders (SAEs) aim to decompose language model representations into a sparse set of linear latent vectors. Recent works have improved SAEs using language model gradients, but these techniques require many expensive backward passes during training and still cause a significant increase in cross entropy loss when SAE reconstructions are inserted into the model. In this work, we improve on these limitations by taking a fundamentally different approach: we use low-rank adaptation (LoRA) to finetune the language model itself around a previously trained SAE. We analyze our method across SAE sparsity, SAE width, language model size, LoRA rank, and model layer on the Gemma Scope family of SAEs. In these settings, our method reduces the cross entropy loss gap by 30% - 55% when SAEs are inserted during the forward pass. We also find that compared to end-to-end (e2e) SAEs, our approach achieves the same downstream cross entropy loss 3$\times$ to 20$\times$ faster on Gemma-2-2B and 2$\times$ to 10$\times$ faster on Llama-3.2-1B. We further show that our technique improves downstream metrics and can adapt multiple SAEs at once. Our results demonstrate that improving model interpretability is not limited to post-hoc SAE training; Pareto improvements can also be achieved by directly optimizing the model itself.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-chen25r, title = {Low-Rank Adapting Models for Sparse Autoencoders}, author = {Chen, Matthew and Engels, Joshua and Tegmark, Max}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {8077--8092}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/chen25r/chen25r.pdf}, url = {https://proceedings.mlr.press/v267/chen25r.html}, abstract = {Sparse autoencoders (SAEs) aim to decompose language model representations into a sparse set of linear latent vectors. Recent works have improved SAEs using language model gradients, but these techniques require many expensive backward passes during training and still cause a significant increase in cross entropy loss when SAE reconstructions are inserted into the model. In this work, we improve on these limitations by taking a fundamentally different approach: we use low-rank adaptation (LoRA) to finetune the language model itself around a previously trained SAE. We analyze our method across SAE sparsity, SAE width, language model size, LoRA rank, and model layer on the Gemma Scope family of SAEs. In these settings, our method reduces the cross entropy loss gap by 30% - 55% when SAEs are inserted during the forward pass. We also find that compared to end-to-end (e2e) SAEs, our approach achieves the same downstream cross entropy loss 3$\times$ to 20$\times$ faster on Gemma-2-2B and 2$\times$ to 10$\times$ faster on Llama-3.2-1B. We further show that our technique improves downstream metrics and can adapt multiple SAEs at once. Our results demonstrate that improving model interpretability is not limited to post-hoc SAE training; Pareto improvements can also be achieved by directly optimizing the model itself.} }
Endnote
%0 Conference Paper %T Low-Rank Adapting Models for Sparse Autoencoders %A Matthew Chen %A Joshua Engels %A Max Tegmark %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-chen25r %I PMLR %P 8077--8092 %U https://proceedings.mlr.press/v267/chen25r.html %V 267 %X Sparse autoencoders (SAEs) aim to decompose language model representations into a sparse set of linear latent vectors. Recent works have improved SAEs using language model gradients, but these techniques require many expensive backward passes during training and still cause a significant increase in cross entropy loss when SAE reconstructions are inserted into the model. In this work, we improve on these limitations by taking a fundamentally different approach: we use low-rank adaptation (LoRA) to finetune the language model itself around a previously trained SAE. We analyze our method across SAE sparsity, SAE width, language model size, LoRA rank, and model layer on the Gemma Scope family of SAEs. In these settings, our method reduces the cross entropy loss gap by 30% - 55% when SAEs are inserted during the forward pass. We also find that compared to end-to-end (e2e) SAEs, our approach achieves the same downstream cross entropy loss 3$\times$ to 20$\times$ faster on Gemma-2-2B and 2$\times$ to 10$\times$ faster on Llama-3.2-1B. We further show that our technique improves downstream metrics and can adapt multiple SAEs at once. Our results demonstrate that improving model interpretability is not limited to post-hoc SAE training; Pareto improvements can also be achieved by directly optimizing the model itself.
APA
Chen, M., Engels, J. & Tegmark, M.. (2025). Low-Rank Adapting Models for Sparse Autoencoders. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:8077-8092 Available from https://proceedings.mlr.press/v267/chen25r.html.

Related Material