BILBO: BILevel Bayesian Optimization

Ruth Wan Theng Chew, Quoc Phong Nguyen, Bryan Kian Hsiang Low
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:10249-10268, 2025.

Abstract

Bilevel optimization is characterized by a two-level optimization structure, where the upper-level problem is constrained by optimal lower-level solutions, and such structures are prevalent in real-world problems. The constraint by optimal lower-level solutions poses significant challenges, especially in noisy, constrained, and derivative-free settings, as repeating lower-level optimizations is sample inefficient and predicted lower-level solutions may be suboptimal. We present BILevel Bayesian Optimization (BILBO), a novel Bayesian optimization algorithm for general bilevel problems with blackbox functions, which optimizes both upper- and lower-level problems simultaneously, without the repeated lower-level optimization required by existing methods. BILBO samples from confidence-bounds based trusted sets, which bounds the suboptimality on the lower level. Moreover, BILBO selects only one function query per iteration, where the function query selection strategy incorporates the uncertainty of estimated lower-level solutions and includes a conditional reassignment of the query to encourage exploration of the lower-level objective. The performance of BILBO is theoretically guaranteed with a sublinear regret bound for commonly used kernels and is empirically evaluated on several synthetic and real-world problems.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-chew25a, title = {{BILBO}: {BIL}evel {B}ayesian Optimization}, author = {Chew, Ruth Wan Theng and Nguyen, Quoc Phong and Low, Bryan Kian Hsiang}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {10249--10268}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/chew25a/chew25a.pdf}, url = {https://proceedings.mlr.press/v267/chew25a.html}, abstract = {Bilevel optimization is characterized by a two-level optimization structure, where the upper-level problem is constrained by optimal lower-level solutions, and such structures are prevalent in real-world problems. The constraint by optimal lower-level solutions poses significant challenges, especially in noisy, constrained, and derivative-free settings, as repeating lower-level optimizations is sample inefficient and predicted lower-level solutions may be suboptimal. We present BILevel Bayesian Optimization (BILBO), a novel Bayesian optimization algorithm for general bilevel problems with blackbox functions, which optimizes both upper- and lower-level problems simultaneously, without the repeated lower-level optimization required by existing methods. BILBO samples from confidence-bounds based trusted sets, which bounds the suboptimality on the lower level. Moreover, BILBO selects only one function query per iteration, where the function query selection strategy incorporates the uncertainty of estimated lower-level solutions and includes a conditional reassignment of the query to encourage exploration of the lower-level objective. The performance of BILBO is theoretically guaranteed with a sublinear regret bound for commonly used kernels and is empirically evaluated on several synthetic and real-world problems.} }
Endnote
%0 Conference Paper %T BILBO: BILevel Bayesian Optimization %A Ruth Wan Theng Chew %A Quoc Phong Nguyen %A Bryan Kian Hsiang Low %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-chew25a %I PMLR %P 10249--10268 %U https://proceedings.mlr.press/v267/chew25a.html %V 267 %X Bilevel optimization is characterized by a two-level optimization structure, where the upper-level problem is constrained by optimal lower-level solutions, and such structures are prevalent in real-world problems. The constraint by optimal lower-level solutions poses significant challenges, especially in noisy, constrained, and derivative-free settings, as repeating lower-level optimizations is sample inefficient and predicted lower-level solutions may be suboptimal. We present BILevel Bayesian Optimization (BILBO), a novel Bayesian optimization algorithm for general bilevel problems with blackbox functions, which optimizes both upper- and lower-level problems simultaneously, without the repeated lower-level optimization required by existing methods. BILBO samples from confidence-bounds based trusted sets, which bounds the suboptimality on the lower level. Moreover, BILBO selects only one function query per iteration, where the function query selection strategy incorporates the uncertainty of estimated lower-level solutions and includes a conditional reassignment of the query to encourage exploration of the lower-level objective. The performance of BILBO is theoretically guaranteed with a sublinear regret bound for commonly used kernels and is empirically evaluated on several synthetic and real-world problems.
APA
Chew, R.W.T., Nguyen, Q.P. & Low, B.K.H.. (2025). BILBO: BILevel Bayesian Optimization. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:10249-10268 Available from https://proceedings.mlr.press/v267/chew25a.html.

Related Material