Differentially Private Space-Efficient Algorithms for Counting Distinct Elements in the Turnstile Model

Rachel Cummings, Alessandro Epasto, Jieming Mao, Tamalika Mukherjee, Tingting Ou, Peilin Zhong
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:11662-11691, 2025.

Abstract

The turnstile continual release model of differential privacy captures scenarios where a privacy-preserving real-time analysis is sought for a dataset evolving through additions and deletions. In typical applications of real-time data analysis, both the length of the stream $T$ and the size of the universe $|\mathcal{U}|$ from which data come can be extremely large. This motivates the study of private algorithms in the turnstile setting using space sublinear in both $T$ and $|\mathcal{U}|$. In this paper, we give the first sublinear space differentially private algorithms for the fundamental problems of counting distinct elements in the turnstile streaming model. Our algorithm achieves, on arbitrary streams, $O_{\eta}(T^{1/3})$ space and additive error, and a $(1+\eta)$-relative approximation for all $\eta \in (0,1)$. Our result significantly improves upon the space requirements of the state-of-the-art algorithms for this problem, which is linear, approaching the known $\Omega(T^{1/4})$ additive error lower bound for arbitrary streams. Moreover, when a bound $W$ on the number of times an item appears in the stream is known, our algorithm provides $O_{\eta}(\sqrt{W})$ additive error, using $O_{\eta}(\sqrt{W})$ space. This additive error asymptotically matches that of prior work which required instead linear space. Our results address an open question posed by Jain et al. about designing low-memory mechanisms for this problem. We complement this results with a space lower bound for this problem, which shows that any algorithm that uses similar techniques must use space $\Omega(T^{1/3})$.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-cummings25a, title = {Differentially Private Space-Efficient Algorithms for Counting Distinct Elements in the Turnstile Model}, author = {Cummings, Rachel and Epasto, Alessandro and Mao, Jieming and Mukherjee, Tamalika and Ou, Tingting and Zhong, Peilin}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {11662--11691}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/cummings25a/cummings25a.pdf}, url = {https://proceedings.mlr.press/v267/cummings25a.html}, abstract = {The turnstile continual release model of differential privacy captures scenarios where a privacy-preserving real-time analysis is sought for a dataset evolving through additions and deletions. In typical applications of real-time data analysis, both the length of the stream $T$ and the size of the universe $|\mathcal{U}|$ from which data come can be extremely large. This motivates the study of private algorithms in the turnstile setting using space sublinear in both $T$ and $|\mathcal{U}|$. In this paper, we give the first sublinear space differentially private algorithms for the fundamental problems of counting distinct elements in the turnstile streaming model. Our algorithm achieves, on arbitrary streams, $O_{\eta}(T^{1/3})$ space and additive error, and a $(1+\eta)$-relative approximation for all $\eta \in (0,1)$. Our result significantly improves upon the space requirements of the state-of-the-art algorithms for this problem, which is linear, approaching the known $\Omega(T^{1/4})$ additive error lower bound for arbitrary streams. Moreover, when a bound $W$ on the number of times an item appears in the stream is known, our algorithm provides $O_{\eta}(\sqrt{W})$ additive error, using $O_{\eta}(\sqrt{W})$ space. This additive error asymptotically matches that of prior work which required instead linear space. Our results address an open question posed by Jain et al. about designing low-memory mechanisms for this problem. We complement this results with a space lower bound for this problem, which shows that any algorithm that uses similar techniques must use space $\Omega(T^{1/3})$.} }
Endnote
%0 Conference Paper %T Differentially Private Space-Efficient Algorithms for Counting Distinct Elements in the Turnstile Model %A Rachel Cummings %A Alessandro Epasto %A Jieming Mao %A Tamalika Mukherjee %A Tingting Ou %A Peilin Zhong %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-cummings25a %I PMLR %P 11662--11691 %U https://proceedings.mlr.press/v267/cummings25a.html %V 267 %X The turnstile continual release model of differential privacy captures scenarios where a privacy-preserving real-time analysis is sought for a dataset evolving through additions and deletions. In typical applications of real-time data analysis, both the length of the stream $T$ and the size of the universe $|\mathcal{U}|$ from which data come can be extremely large. This motivates the study of private algorithms in the turnstile setting using space sublinear in both $T$ and $|\mathcal{U}|$. In this paper, we give the first sublinear space differentially private algorithms for the fundamental problems of counting distinct elements in the turnstile streaming model. Our algorithm achieves, on arbitrary streams, $O_{\eta}(T^{1/3})$ space and additive error, and a $(1+\eta)$-relative approximation for all $\eta \in (0,1)$. Our result significantly improves upon the space requirements of the state-of-the-art algorithms for this problem, which is linear, approaching the known $\Omega(T^{1/4})$ additive error lower bound for arbitrary streams. Moreover, when a bound $W$ on the number of times an item appears in the stream is known, our algorithm provides $O_{\eta}(\sqrt{W})$ additive error, using $O_{\eta}(\sqrt{W})$ space. This additive error asymptotically matches that of prior work which required instead linear space. Our results address an open question posed by Jain et al. about designing low-memory mechanisms for this problem. We complement this results with a space lower bound for this problem, which shows that any algorithm that uses similar techniques must use space $\Omega(T^{1/3})$.
APA
Cummings, R., Epasto, A., Mao, J., Mukherjee, T., Ou, T. & Zhong, P.. (2025). Differentially Private Space-Efficient Algorithms for Counting Distinct Elements in the Turnstile Model. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:11662-11691 Available from https://proceedings.mlr.press/v267/cummings25a.html.

Related Material