Learning Gaussian DAG Models without Condition Number Bounds

Constantinos Costis Daskalakis, Anthimos Vardis Kandiros, Rui Yao
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:12554-12589, 2025.

Abstract

We study the problem of learning the topology of a directed Gaussian Graphical Model under the equal-variance assumption, where the graph has $n$ nodes and maximum in-degree $d$. Prior work has established that $O(d \log n)$ samples are sufficient for this task. However, an important factor that is often overlooked in these analyses is the dependence on the condition number of the covariance matrix of the model. Indeed, all algorithms from prior work require a number of samples that grows polynomially with this condition number. In many cases this is unsatisfactory, since the condition number could grow polynomially with $n$, rendering these prior approaches impractical in high-dimensional settings. In this work, we provide an algorithm that recovers the underlying graph and prove that the number of samples required is independent of the condition number. Furthermore, we establish lower bounds that nearly match the upper bound up to a $d$-factor, thus providing an almost tight characterization of the true sample complexity of the problem. Moreover, under a further assumption that all the variances of the variables are bounded, we design a polynomial-time algorithm that recovers the underlying graph, at the cost of an additional polynomial dependence of the sample complexity on $d$. We complement our theoretical findings with simulations on synthetic datasets that confirm our predictions.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-daskalakis25a, title = {Learning {G}aussian {DAG} Models without Condition Number Bounds}, author = {Daskalakis, Constantinos Costis and Kandiros, Anthimos Vardis and Yao, Rui}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {12554--12589}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/daskalakis25a/daskalakis25a.pdf}, url = {https://proceedings.mlr.press/v267/daskalakis25a.html}, abstract = {We study the problem of learning the topology of a directed Gaussian Graphical Model under the equal-variance assumption, where the graph has $n$ nodes and maximum in-degree $d$. Prior work has established that $O(d \log n)$ samples are sufficient for this task. However, an important factor that is often overlooked in these analyses is the dependence on the condition number of the covariance matrix of the model. Indeed, all algorithms from prior work require a number of samples that grows polynomially with this condition number. In many cases this is unsatisfactory, since the condition number could grow polynomially with $n$, rendering these prior approaches impractical in high-dimensional settings. In this work, we provide an algorithm that recovers the underlying graph and prove that the number of samples required is independent of the condition number. Furthermore, we establish lower bounds that nearly match the upper bound up to a $d$-factor, thus providing an almost tight characterization of the true sample complexity of the problem. Moreover, under a further assumption that all the variances of the variables are bounded, we design a polynomial-time algorithm that recovers the underlying graph, at the cost of an additional polynomial dependence of the sample complexity on $d$. We complement our theoretical findings with simulations on synthetic datasets that confirm our predictions.} }
Endnote
%0 Conference Paper %T Learning Gaussian DAG Models without Condition Number Bounds %A Constantinos Costis Daskalakis %A Anthimos Vardis Kandiros %A Rui Yao %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-daskalakis25a %I PMLR %P 12554--12589 %U https://proceedings.mlr.press/v267/daskalakis25a.html %V 267 %X We study the problem of learning the topology of a directed Gaussian Graphical Model under the equal-variance assumption, where the graph has $n$ nodes and maximum in-degree $d$. Prior work has established that $O(d \log n)$ samples are sufficient for this task. However, an important factor that is often overlooked in these analyses is the dependence on the condition number of the covariance matrix of the model. Indeed, all algorithms from prior work require a number of samples that grows polynomially with this condition number. In many cases this is unsatisfactory, since the condition number could grow polynomially with $n$, rendering these prior approaches impractical in high-dimensional settings. In this work, we provide an algorithm that recovers the underlying graph and prove that the number of samples required is independent of the condition number. Furthermore, we establish lower bounds that nearly match the upper bound up to a $d$-factor, thus providing an almost tight characterization of the true sample complexity of the problem. Moreover, under a further assumption that all the variances of the variables are bounded, we design a polynomial-time algorithm that recovers the underlying graph, at the cost of an additional polynomial dependence of the sample complexity on $d$. We complement our theoretical findings with simulations on synthetic datasets that confirm our predictions.
APA
Daskalakis, C.C., Kandiros, A.V. & Yao, R.. (2025). Learning Gaussian DAG Models without Condition Number Bounds. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:12554-12589 Available from https://proceedings.mlr.press/v267/daskalakis25a.html.

Related Material