A Unified Approach to Routing and Cascading for LLMs

Jasper Dekoninck, Maximilian Baader, Martin Vechev
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:12987-13010, 2025.

Abstract

The availability of a wide range of large language models (LLMs) embedded in various agentic systems has significantly increased the potential of model selection strategies to improve the cost-performance tradeoff. Existing strategies involve either routing, where a single model is chosen per query, or cascading, which sequentially runs increasingly larger models until a satisfactory answer is found. However, current approaches face three key limitations: they (1) lack formal proofs of optimality, (2) fail to identify the conditions under which these strategies are most effective to improve the cost-performance tradeoff, and (3) are unable to combine both paradigms for further improvements. To address these issues, we first derive a novel optimal strategy for cascading and prove the optimality of an existing routing strategy. Further, we propose cascade routing, a unified framework that integrates routing and cascading into a theoretically optimal strategy. Through our analysis, we identify good quality estimators as the critical factor for the success of model selection paradigms. Finally, in our experiments, we show that cascade routing consistently outperforms the individual approaches by a large margin and we analyze quality estimators to determine when routing and/or cascading are useful paradigms for model selection.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-dekoninck25a, title = {A Unified Approach to Routing and Cascading for {LLM}s}, author = {Dekoninck, Jasper and Baader, Maximilian and Vechev, Martin}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {12987--13010}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/dekoninck25a/dekoninck25a.pdf}, url = {https://proceedings.mlr.press/v267/dekoninck25a.html}, abstract = {The availability of a wide range of large language models (LLMs) embedded in various agentic systems has significantly increased the potential of model selection strategies to improve the cost-performance tradeoff. Existing strategies involve either routing, where a single model is chosen per query, or cascading, which sequentially runs increasingly larger models until a satisfactory answer is found. However, current approaches face three key limitations: they (1) lack formal proofs of optimality, (2) fail to identify the conditions under which these strategies are most effective to improve the cost-performance tradeoff, and (3) are unable to combine both paradigms for further improvements. To address these issues, we first derive a novel optimal strategy for cascading and prove the optimality of an existing routing strategy. Further, we propose cascade routing, a unified framework that integrates routing and cascading into a theoretically optimal strategy. Through our analysis, we identify good quality estimators as the critical factor for the success of model selection paradigms. Finally, in our experiments, we show that cascade routing consistently outperforms the individual approaches by a large margin and we analyze quality estimators to determine when routing and/or cascading are useful paradigms for model selection.} }
Endnote
%0 Conference Paper %T A Unified Approach to Routing and Cascading for LLMs %A Jasper Dekoninck %A Maximilian Baader %A Martin Vechev %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-dekoninck25a %I PMLR %P 12987--13010 %U https://proceedings.mlr.press/v267/dekoninck25a.html %V 267 %X The availability of a wide range of large language models (LLMs) embedded in various agentic systems has significantly increased the potential of model selection strategies to improve the cost-performance tradeoff. Existing strategies involve either routing, where a single model is chosen per query, or cascading, which sequentially runs increasingly larger models until a satisfactory answer is found. However, current approaches face three key limitations: they (1) lack formal proofs of optimality, (2) fail to identify the conditions under which these strategies are most effective to improve the cost-performance tradeoff, and (3) are unable to combine both paradigms for further improvements. To address these issues, we first derive a novel optimal strategy for cascading and prove the optimality of an existing routing strategy. Further, we propose cascade routing, a unified framework that integrates routing and cascading into a theoretically optimal strategy. Through our analysis, we identify good quality estimators as the critical factor for the success of model selection paradigms. Finally, in our experiments, we show that cascade routing consistently outperforms the individual approaches by a large margin and we analyze quality estimators to determine when routing and/or cascading are useful paradigms for model selection.
APA
Dekoninck, J., Baader, M. & Vechev, M.. (2025). A Unified Approach to Routing and Cascading for LLMs. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:12987-13010 Available from https://proceedings.mlr.press/v267/dekoninck25a.html.

Related Material