Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination

Ilias Diakonikolas, Giannis Iakovidis, Daniel Kane, Thanasis Pittas
Proceedings of the 42nd International Conference on Machine Learning, PMLR 267:13570-13600, 2025.

Abstract

We study the algorithmic problem of robust mean estimation of an identity covariance Gaussian in the presence of mean-shift contamination. In this contamination model, we are given a set of points in $\mathbb{R}^d$ generated i.i.d. via the following process. For a parameter $\alpha<1/2$, the $i$-th sample $x_i$ is obtained as follows: with probability $1-\alpha$, $x_i$ is drawn from $\mathcal{N}(\mu, I)$, where $\mu \in \mathbb{R}^d$ is the target mean; and with probability $\alpha$, $x_i$ is drawn from $\mathcal{N}(z_i, I)$, where $z_i$ is unknown and potentially arbitrary. Prior work characterized the information-theoretic limits of this task. Specifically, it was shown that— in contrast to Huber contamination— in the presence of mean-shift contamination consistent estimation is possible. On the other hand, all known robust estimators in the mean-shift model have running times exponential in the dimension. Here we give the first computationally efficient algorithm for high-dimensional robust mean estimation with mean-shift contamination that can tolerate a constant fraction of outliers. In particular, our algorithm has near-optimal sample complexity, runs in sample-polynomial time, and approximates the target mean to any desired accuracy. Conceptually, our result contributes to a growing body of work that studies inference with respect to natural noise models lying in between fully adversarial and random settings.

Cite this Paper


BibTeX
@InProceedings{pmlr-v267-diakonikolas25a, title = {Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination}, author = {Diakonikolas, Ilias and Iakovidis, Giannis and Kane, Daniel and Pittas, Thanasis}, booktitle = {Proceedings of the 42nd International Conference on Machine Learning}, pages = {13570--13600}, year = {2025}, editor = {Singh, Aarti and Fazel, Maryam and Hsu, Daniel and Lacoste-Julien, Simon and Berkenkamp, Felix and Maharaj, Tegan and Wagstaff, Kiri and Zhu, Jerry}, volume = {267}, series = {Proceedings of Machine Learning Research}, month = {13--19 Jul}, publisher = {PMLR}, pdf = {https://raw.githubusercontent.com/mlresearch/v267/main/assets/diakonikolas25a/diakonikolas25a.pdf}, url = {https://proceedings.mlr.press/v267/diakonikolas25a.html}, abstract = {We study the algorithmic problem of robust mean estimation of an identity covariance Gaussian in the presence of mean-shift contamination. In this contamination model, we are given a set of points in $\mathbb{R}^d$ generated i.i.d. via the following process. For a parameter $\alpha<1/2$, the $i$-th sample $x_i$ is obtained as follows: with probability $1-\alpha$, $x_i$ is drawn from $\mathcal{N}(\mu, I)$, where $\mu \in \mathbb{R}^d$ is the target mean; and with probability $\alpha$, $x_i$ is drawn from $\mathcal{N}(z_i, I)$, where $z_i$ is unknown and potentially arbitrary. Prior work characterized the information-theoretic limits of this task. Specifically, it was shown that— in contrast to Huber contamination— in the presence of mean-shift contamination consistent estimation is possible. On the other hand, all known robust estimators in the mean-shift model have running times exponential in the dimension. Here we give the first computationally efficient algorithm for high-dimensional robust mean estimation with mean-shift contamination that can tolerate a constant fraction of outliers. In particular, our algorithm has near-optimal sample complexity, runs in sample-polynomial time, and approximates the target mean to any desired accuracy. Conceptually, our result contributes to a growing body of work that studies inference with respect to natural noise models lying in between fully adversarial and random settings.} }
Endnote
%0 Conference Paper %T Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination %A Ilias Diakonikolas %A Giannis Iakovidis %A Daniel Kane %A Thanasis Pittas %B Proceedings of the 42nd International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2025 %E Aarti Singh %E Maryam Fazel %E Daniel Hsu %E Simon Lacoste-Julien %E Felix Berkenkamp %E Tegan Maharaj %E Kiri Wagstaff %E Jerry Zhu %F pmlr-v267-diakonikolas25a %I PMLR %P 13570--13600 %U https://proceedings.mlr.press/v267/diakonikolas25a.html %V 267 %X We study the algorithmic problem of robust mean estimation of an identity covariance Gaussian in the presence of mean-shift contamination. In this contamination model, we are given a set of points in $\mathbb{R}^d$ generated i.i.d. via the following process. For a parameter $\alpha<1/2$, the $i$-th sample $x_i$ is obtained as follows: with probability $1-\alpha$, $x_i$ is drawn from $\mathcal{N}(\mu, I)$, where $\mu \in \mathbb{R}^d$ is the target mean; and with probability $\alpha$, $x_i$ is drawn from $\mathcal{N}(z_i, I)$, where $z_i$ is unknown and potentially arbitrary. Prior work characterized the information-theoretic limits of this task. Specifically, it was shown that— in contrast to Huber contamination— in the presence of mean-shift contamination consistent estimation is possible. On the other hand, all known robust estimators in the mean-shift model have running times exponential in the dimension. Here we give the first computationally efficient algorithm for high-dimensional robust mean estimation with mean-shift contamination that can tolerate a constant fraction of outliers. In particular, our algorithm has near-optimal sample complexity, runs in sample-polynomial time, and approximates the target mean to any desired accuracy. Conceptually, our result contributes to a growing body of work that studies inference with respect to natural noise models lying in between fully adversarial and random settings.
APA
Diakonikolas, I., Iakovidis, G., Kane, D. & Pittas, T.. (2025). Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination. Proceedings of the 42nd International Conference on Machine Learning, in Proceedings of Machine Learning Research 267:13570-13600 Available from https://proceedings.mlr.press/v267/diakonikolas25a.html.

Related Material